Metamath Proof Explorer


Theorem prmo4

Description: The primorial of 4. (Contributed by AV, 28-Aug-2020)

Ref Expression
Assertion prmo4 ( #p ‘ 4 ) = 6

Proof

Step Hyp Ref Expression
1 4nn 4 ∈ ℕ
2 prmonn2 ( 4 ∈ ℕ → ( #p ‘ 4 ) = if ( 4 ∈ ℙ , ( ( #p ‘ ( 4 − 1 ) ) · 4 ) , ( #p ‘ ( 4 − 1 ) ) ) )
3 1 2 ax-mp ( #p ‘ 4 ) = if ( 4 ∈ ℙ , ( ( #p ‘ ( 4 − 1 ) ) · 4 ) , ( #p ‘ ( 4 − 1 ) ) )
4 4nprm ¬ 4 ∈ ℙ
5 4 iffalsei if ( 4 ∈ ℙ , ( ( #p ‘ ( 4 − 1 ) ) · 4 ) , ( #p ‘ ( 4 − 1 ) ) ) = ( #p ‘ ( 4 − 1 ) )
6 3 5 eqtri ( #p ‘ 4 ) = ( #p ‘ ( 4 − 1 ) )
7 4m1e3 ( 4 − 1 ) = 3
8 7 fveq2i ( #p ‘ ( 4 − 1 ) ) = ( #p ‘ 3 )
9 prmo3 ( #p ‘ 3 ) = 6
10 8 9 eqtri ( #p ‘ ( 4 − 1 ) ) = 6
11 6 10 eqtri ( #p ‘ 4 ) = 6