| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4nn | ⊢ 4  ∈  ℕ | 
						
							| 2 |  | prmonn2 | ⊢ ( 4  ∈  ℕ  →  ( #p ‘ 4 )  =  if ( 4  ∈  ℙ ,  ( ( #p ‘ ( 4  −  1 ) )  ·  4 ) ,  ( #p ‘ ( 4  −  1 ) ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( #p ‘ 4 )  =  if ( 4  ∈  ℙ ,  ( ( #p ‘ ( 4  −  1 ) )  ·  4 ) ,  ( #p ‘ ( 4  −  1 ) ) ) | 
						
							| 4 |  | 4nprm | ⊢ ¬  4  ∈  ℙ | 
						
							| 5 | 4 | iffalsei | ⊢ if ( 4  ∈  ℙ ,  ( ( #p ‘ ( 4  −  1 ) )  ·  4 ) ,  ( #p ‘ ( 4  −  1 ) ) )  =  ( #p ‘ ( 4  −  1 ) ) | 
						
							| 6 | 3 5 | eqtri | ⊢ ( #p ‘ 4 )  =  ( #p ‘ ( 4  −  1 ) ) | 
						
							| 7 |  | 4m1e3 | ⊢ ( 4  −  1 )  =  3 | 
						
							| 8 | 7 | fveq2i | ⊢ ( #p ‘ ( 4  −  1 ) )  =  ( #p ‘ 3 ) | 
						
							| 9 |  | prmo3 | ⊢ ( #p ‘ 3 )  =  6 | 
						
							| 10 | 8 9 | eqtri | ⊢ ( #p ‘ ( 4  −  1 ) )  =  6 | 
						
							| 11 | 6 10 | eqtri | ⊢ ( #p ‘ 4 )  =  6 |