Step |
Hyp |
Ref |
Expression |
1 |
|
6nn |
⊢ 6 ∈ ℕ |
2 |
|
prmonn2 |
⊢ ( 6 ∈ ℕ → ( #p ‘ 6 ) = if ( 6 ∈ ℙ , ( ( #p ‘ ( 6 − 1 ) ) · 6 ) , ( #p ‘ ( 6 − 1 ) ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( #p ‘ 6 ) = if ( 6 ∈ ℙ , ( ( #p ‘ ( 6 − 1 ) ) · 6 ) , ( #p ‘ ( 6 − 1 ) ) ) |
4 |
|
6nprm |
⊢ ¬ 6 ∈ ℙ |
5 |
4
|
iffalsei |
⊢ if ( 6 ∈ ℙ , ( ( #p ‘ ( 6 − 1 ) ) · 6 ) , ( #p ‘ ( 6 − 1 ) ) ) = ( #p ‘ ( 6 − 1 ) ) |
6 |
3 5
|
eqtri |
⊢ ( #p ‘ 6 ) = ( #p ‘ ( 6 − 1 ) ) |
7 |
|
6m1e5 |
⊢ ( 6 − 1 ) = 5 |
8 |
7
|
fveq2i |
⊢ ( #p ‘ ( 6 − 1 ) ) = ( #p ‘ 5 ) |
9 |
|
prmo5 |
⊢ ( #p ‘ 5 ) = ; 3 0 |
10 |
8 9
|
eqtri |
⊢ ( #p ‘ ( 6 − 1 ) ) = ; 3 0 |
11 |
6 10
|
eqtri |
⊢ ( #p ‘ 6 ) = ; 3 0 |