Description: Closure of the primorial function. (Contributed by AV, 28-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | prmocl | ⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) ∈ ℕ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmoval | ⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) | |
2 | fzfid | ⊢ ( 𝑁 ∈ ℕ0 → ( 1 ... 𝑁 ) ∈ Fin ) | |
3 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℕ ) | |
4 | 3 | adantl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℕ ) |
5 | 1nn | ⊢ 1 ∈ ℕ | |
6 | 5 | a1i | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 1 ∈ ℕ ) |
7 | 4 6 | ifcld | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℕ ) |
8 | 2 7 | fprodnncl | ⊢ ( 𝑁 ∈ ℕ0 → ∏ 𝑘 ∈ ( 1 ... 𝑁 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℕ ) |
9 | 1 8 | eqeltrd | ⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) ∈ ℕ ) |