Step |
Hyp |
Ref |
Expression |
1 |
|
prmoval |
⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |
2 |
|
eqidd |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) = ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ) |
3 |
|
simpr |
⊢ ( ( 𝑘 ∈ ( 1 ... 𝑁 ) ∧ 𝑚 = 𝑘 ) → 𝑚 = 𝑘 ) |
4 |
3
|
eleq1d |
⊢ ( ( 𝑘 ∈ ( 1 ... 𝑁 ) ∧ 𝑚 = 𝑘 ) → ( 𝑚 ∈ ℙ ↔ 𝑘 ∈ ℙ ) ) |
5 |
4 3
|
ifbieq1d |
⊢ ( ( 𝑘 ∈ ( 1 ... 𝑁 ) ∧ 𝑚 = 𝑘 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |
6 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℕ ) |
7 |
|
1nn |
⊢ 1 ∈ ℕ |
8 |
7
|
a1i |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 1 ∈ ℕ ) |
9 |
6 8
|
ifcld |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℕ ) |
10 |
2 5 6 9
|
fvmptd |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |
11 |
10
|
eqcomd |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ‘ 𝑘 ) ) |
12 |
11
|
prodeq2i |
⊢ ∏ 𝑘 ∈ ( 1 ... 𝑁 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ‘ 𝑘 ) |
13 |
1 12
|
eqtrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ‘ 𝑘 ) ) |
14 |
|
fzfid |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 ... 𝑁 ) ∈ Fin ) |
15 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
16 |
14 15
|
jctil |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 1 ... 𝑁 ) ⊆ ℕ ∧ ( 1 ... 𝑁 ) ∈ Fin ) ) |
17 |
|
fzssz |
⊢ ( 1 ... 𝑁 ) ⊆ ℤ |
18 |
17
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 ... 𝑁 ) ⊆ ℤ ) |
19 |
|
0nelfz1 |
⊢ 0 ∉ ( 1 ... 𝑁 ) |
20 |
19
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 0 ∉ ( 1 ... 𝑁 ) ) |
21 |
|
lcmfn0cl |
⊢ ( ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ∧ 0 ∉ ( 1 ... 𝑁 ) ) → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ ) |
22 |
18 14 20 21
|
syl3anc |
⊢ ( 𝑁 ∈ ℕ0 → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ ) |
23 |
|
id |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ ) |
24 |
7
|
a1i |
⊢ ( 𝑚 ∈ ℕ → 1 ∈ ℕ ) |
25 |
23 24
|
ifcld |
⊢ ( 𝑚 ∈ ℕ → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ∈ ℕ ) |
26 |
25
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ∈ ℕ ) |
27 |
26
|
fmpttd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) : ℕ ⟶ ℕ ) |
28 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ( 1 ... 𝑁 ) ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑥 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑘 } ) ) → 𝑘 ∈ ( 1 ... 𝑁 ) ) |
30 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑘 } ) → 𝑥 ∈ ( 1 ... 𝑁 ) ) |
31 |
30
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑥 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑘 } ) ) → 𝑥 ∈ ( 1 ... 𝑁 ) ) |
32 |
|
eldif |
⊢ ( 𝑥 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑘 } ) ↔ ( 𝑥 ∈ ( 1 ... 𝑁 ) ∧ ¬ 𝑥 ∈ { 𝑘 } ) ) |
33 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝑘 } ↔ 𝑥 = 𝑘 ) |
34 |
33
|
biimpri |
⊢ ( 𝑥 = 𝑘 → 𝑥 ∈ { 𝑘 } ) |
35 |
34
|
equcoms |
⊢ ( 𝑘 = 𝑥 → 𝑥 ∈ { 𝑘 } ) |
36 |
35
|
necon3bi |
⊢ ( ¬ 𝑥 ∈ { 𝑘 } → 𝑘 ≠ 𝑥 ) |
37 |
32 36
|
simplbiim |
⊢ ( 𝑥 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑘 } ) → 𝑘 ≠ 𝑥 ) |
38 |
37
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑥 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑘 } ) ) → 𝑘 ≠ 𝑥 ) |
39 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) = ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) |
40 |
39
|
fvprmselgcd1 |
⊢ ( ( 𝑘 ∈ ( 1 ... 𝑁 ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ∧ 𝑘 ≠ 𝑥 ) → ( ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ‘ 𝑘 ) gcd ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ‘ 𝑥 ) ) = 1 ) |
41 |
29 31 38 40
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑥 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑘 } ) ) → ( ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ‘ 𝑘 ) gcd ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ‘ 𝑥 ) ) = 1 ) |
42 |
41
|
ralrimiva |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ∀ 𝑥 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑘 } ) ( ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ‘ 𝑘 ) gcd ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ‘ 𝑥 ) ) = 1 ) |
43 |
42
|
ralrimiva |
⊢ ( 𝑁 ∈ ℕ0 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ∀ 𝑥 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑘 } ) ( ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ‘ 𝑘 ) gcd ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ‘ 𝑥 ) ) = 1 ) |
44 |
|
eqidd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) = ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ) |
45 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑚 = 𝑘 ) → 𝑚 = 𝑘 ) |
46 |
45
|
eleq1d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑚 = 𝑘 ) → ( 𝑚 ∈ ℙ ↔ 𝑘 ∈ ℙ ) ) |
47 |
46 45
|
ifbieq1d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑚 = 𝑘 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |
48 |
15 28
|
sselid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℕ ) |
49 |
17 28
|
sselid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℤ ) |
50 |
|
1zzd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 1 ∈ ℤ ) |
51 |
49 50
|
ifcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℤ ) |
52 |
44 47 48 51
|
fvmptd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |
53 |
|
breq1 |
⊢ ( 𝑥 = if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) → ( 𝑥 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ↔ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) |
54 |
16
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( ( 1 ... 𝑁 ) ⊆ ℕ ∧ ( 1 ... 𝑁 ) ∈ Fin ) ) |
55 |
17
|
2a1i |
⊢ ( ( 1 ... 𝑁 ) ∈ Fin → ( ( 1 ... 𝑁 ) ⊆ ℕ → ( 1 ... 𝑁 ) ⊆ ℤ ) ) |
56 |
55
|
imdistanri |
⊢ ( ( ( 1 ... 𝑁 ) ⊆ ℕ ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ) ) |
57 |
|
dvdslcmf |
⊢ ( ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ∀ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑥 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
58 |
54 56 57
|
3syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ∀ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑥 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
59 |
|
elfzuz2 |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
60 |
59
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
61 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝑁 ) ) |
62 |
60 61
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 1 ∈ ( 1 ... 𝑁 ) ) |
63 |
28 62
|
ifcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ( 1 ... 𝑁 ) ) |
64 |
53 58 63
|
rspcdva |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
65 |
52 64
|
eqbrtrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ‘ 𝑘 ) ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
66 |
65
|
ralrimiva |
⊢ ( 𝑁 ∈ ℕ0 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ‘ 𝑘 ) ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
67 |
|
coprmproddvds |
⊢ ( ( ( ( 1 ... 𝑁 ) ⊆ ℕ ∧ ( 1 ... 𝑁 ) ∈ Fin ) ∧ ( ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ ∧ ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) : ℕ ⟶ ℕ ) ∧ ( ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ∀ 𝑥 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑘 } ) ( ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ‘ 𝑘 ) gcd ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ‘ 𝑥 ) ) = 1 ∧ ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ‘ 𝑘 ) ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) → ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ‘ 𝑘 ) ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
68 |
16 22 27 43 66 67
|
syl122anc |
⊢ ( 𝑁 ∈ ℕ0 → ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) ‘ 𝑘 ) ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
69 |
13 68
|
eqbrtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |