Step |
Hyp |
Ref |
Expression |
1 |
|
nfv |
⊢ Ⅎ 𝑘 𝑁 ∈ ℕ0 |
2 |
|
fzfid |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 ... 𝑁 ) ∈ Fin ) |
3 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℕ ) |
4 |
3
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℕ ) |
5 |
|
1nn |
⊢ 1 ∈ ℕ |
6 |
5
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 1 ∈ ℕ ) |
7 |
4 6
|
ifcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℕ ) |
8 |
7
|
nnred |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℝ ) |
9 |
|
ifeqor |
⊢ ( if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 𝑘 ∨ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 1 ) |
10 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
11 |
10
|
nn0ge0d |
⊢ ( 𝑘 ∈ ℕ → 0 ≤ 𝑘 ) |
12 |
3 11
|
syl |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 0 ≤ 𝑘 ) |
13 |
12
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 0 ≤ 𝑘 ) |
14 |
|
breq2 |
⊢ ( if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 𝑘 → ( 0 ≤ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ↔ 0 ≤ 𝑘 ) ) |
15 |
13 14
|
syl5ibr |
⊢ ( if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 𝑘 → ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 0 ≤ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) ) |
16 |
|
0le1 |
⊢ 0 ≤ 1 |
17 |
|
breq2 |
⊢ ( if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 1 → ( 0 ≤ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ↔ 0 ≤ 1 ) ) |
18 |
17
|
adantr |
⊢ ( ( if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 1 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) ) → ( 0 ≤ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ↔ 0 ≤ 1 ) ) |
19 |
16 18
|
mpbiri |
⊢ ( ( if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 1 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) ) → 0 ≤ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |
20 |
19
|
ex |
⊢ ( if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 1 → ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 0 ≤ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) ) |
21 |
15 20
|
jaoi |
⊢ ( ( if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 𝑘 ∨ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 1 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 0 ≤ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) ) |
22 |
9 21
|
ax-mp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 0 ≤ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |
23 |
4
|
nnred |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℝ ) |
24 |
23
|
leidd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ≤ 𝑘 ) |
25 |
|
breq1 |
⊢ ( if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 𝑘 → ( if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ≤ 𝑘 ↔ 𝑘 ≤ 𝑘 ) ) |
26 |
24 25
|
syl5ibr |
⊢ ( if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 𝑘 → ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ≤ 𝑘 ) ) |
27 |
4
|
nnge1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 1 ≤ 𝑘 ) |
28 |
|
breq1 |
⊢ ( if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 1 → ( if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ≤ 𝑘 ↔ 1 ≤ 𝑘 ) ) |
29 |
27 28
|
syl5ibr |
⊢ ( if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 1 → ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ≤ 𝑘 ) ) |
30 |
26 29
|
jaoi |
⊢ ( ( if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 𝑘 ∨ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 1 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ≤ 𝑘 ) ) |
31 |
9 30
|
ax-mp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ≤ 𝑘 ) |
32 |
1 2 8 22 23 31
|
fprodle |
⊢ ( 𝑁 ∈ ℕ0 → ∏ 𝑘 ∈ ( 1 ... 𝑁 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ≤ ∏ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ) |
33 |
|
prmoval |
⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |
34 |
|
fprodfac |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ) |
35 |
32 33 34
|
3brtr4d |
⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) ≤ ( ! ‘ 𝑁 ) ) |