Step |
Hyp |
Ref |
Expression |
1 |
|
prmocl |
⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) ∈ ℕ ) |
2 |
1
|
nnzd |
⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) ∈ ℤ ) |
3 |
|
fzssz |
⊢ ( 1 ... 𝑁 ) ⊆ ℤ |
4 |
|
fzfid |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 ... 𝑁 ) ∈ Fin ) |
5 |
|
0nelfz1 |
⊢ 0 ∉ ( 1 ... 𝑁 ) |
6 |
5
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 0 ∉ ( 1 ... 𝑁 ) ) |
7 |
|
lcmfn0cl |
⊢ ( ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ∧ 0 ∉ ( 1 ... 𝑁 ) ) → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ ) |
8 |
3 4 6 7
|
mp3an2i |
⊢ ( 𝑁 ∈ ℕ0 → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ ) |
9 |
2 8
|
jca |
⊢ ( 𝑁 ∈ ℕ0 → ( ( #p ‘ 𝑁 ) ∈ ℤ ∧ ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ ) ) |
10 |
|
prmodvdslcmf |
⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
11 |
|
dvdsle |
⊢ ( ( ( #p ‘ 𝑁 ) ∈ ℤ ∧ ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ ) → ( ( #p ‘ 𝑁 ) ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) → ( #p ‘ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) |
12 |
9 10 11
|
sylc |
⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |