| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmorcht.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  𝑛 ,  1 ) ) | 
						
							| 2 |  | nnre | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℝ ) | 
						
							| 3 |  | chtval | ⊢ ( 𝐴  ∈  ℝ  →  ( θ ‘ 𝐴 )  =  Σ 𝑘  ∈  ( ( 0 [,] 𝐴 )  ∩  ℙ ) ( log ‘ 𝑘 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝐴  ∈  ℕ  →  ( θ ‘ 𝐴 )  =  Σ 𝑘  ∈  ( ( 0 [,] 𝐴 )  ∩  ℙ ) ( log ‘ 𝑘 ) ) | 
						
							| 5 |  | 2eluzge1 | ⊢ 2  ∈  ( ℤ≥ ‘ 1 ) | 
						
							| 6 |  | ppisval2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  2  ∈  ( ℤ≥ ‘ 1 ) )  →  ( ( 0 [,] 𝐴 )  ∩  ℙ )  =  ( ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ ) ) | 
						
							| 7 | 2 5 6 | sylancl | ⊢ ( 𝐴  ∈  ℕ  →  ( ( 0 [,] 𝐴 )  ∩  ℙ )  =  ( ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ ) ) | 
						
							| 8 |  | nnz | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℤ ) | 
						
							| 9 |  | flid | ⊢ ( 𝐴  ∈  ℤ  →  ( ⌊ ‘ 𝐴 )  =  𝐴 ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝐴  ∈  ℕ  →  ( ⌊ ‘ 𝐴 )  =  𝐴 ) | 
						
							| 11 | 10 | oveq2d | ⊢ ( 𝐴  ∈  ℕ  →  ( 1 ... ( ⌊ ‘ 𝐴 ) )  =  ( 1 ... 𝐴 ) ) | 
						
							| 12 | 11 | ineq1d | ⊢ ( 𝐴  ∈  ℕ  →  ( ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ )  =  ( ( 1 ... 𝐴 )  ∩  ℙ ) ) | 
						
							| 13 | 7 12 | eqtrd | ⊢ ( 𝐴  ∈  ℕ  →  ( ( 0 [,] 𝐴 )  ∩  ℙ )  =  ( ( 1 ... 𝐴 )  ∩  ℙ ) ) | 
						
							| 14 | 13 | sumeq1d | ⊢ ( 𝐴  ∈  ℕ  →  Σ 𝑘  ∈  ( ( 0 [,] 𝐴 )  ∩  ℙ ) ( log ‘ 𝑘 )  =  Σ 𝑘  ∈  ( ( 1 ... 𝐴 )  ∩  ℙ ) ( log ‘ 𝑘 ) ) | 
						
							| 15 |  | inss1 | ⊢ ( ( 1 ... 𝐴 )  ∩  ℙ )  ⊆  ( 1 ... 𝐴 ) | 
						
							| 16 |  | elinel1 | ⊢ ( 𝑘  ∈  ( ( 1 ... 𝐴 )  ∩  ℙ )  →  𝑘  ∈  ( 1 ... 𝐴 ) ) | 
						
							| 17 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... 𝐴 )  →  𝑘  ∈  ℕ ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝐴 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 19 | 18 | nnrpd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝐴 ) )  →  𝑘  ∈  ℝ+ ) | 
						
							| 20 | 19 | relogcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝐴 ) )  →  ( log ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 21 | 20 | recnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝐴 ) )  →  ( log ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 22 | 16 21 | sylan2 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑘  ∈  ( ( 1 ... 𝐴 )  ∩  ℙ ) )  →  ( log ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 23 | 22 | ralrimiva | ⊢ ( 𝐴  ∈  ℕ  →  ∀ 𝑘  ∈  ( ( 1 ... 𝐴 )  ∩  ℙ ) ( log ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 24 |  | fzfi | ⊢ ( 1 ... 𝐴 )  ∈  Fin | 
						
							| 25 | 24 | olci | ⊢ ( ( 1 ... 𝐴 )  ⊆  ( ℤ≥ ‘ 1 )  ∨  ( 1 ... 𝐴 )  ∈  Fin ) | 
						
							| 26 |  | sumss2 | ⊢ ( ( ( ( ( 1 ... 𝐴 )  ∩  ℙ )  ⊆  ( 1 ... 𝐴 )  ∧  ∀ 𝑘  ∈  ( ( 1 ... 𝐴 )  ∩  ℙ ) ( log ‘ 𝑘 )  ∈  ℂ )  ∧  ( ( 1 ... 𝐴 )  ⊆  ( ℤ≥ ‘ 1 )  ∨  ( 1 ... 𝐴 )  ∈  Fin ) )  →  Σ 𝑘  ∈  ( ( 1 ... 𝐴 )  ∩  ℙ ) ( log ‘ 𝑘 )  =  Σ 𝑘  ∈  ( 1 ... 𝐴 ) if ( 𝑘  ∈  ( ( 1 ... 𝐴 )  ∩  ℙ ) ,  ( log ‘ 𝑘 ) ,  0 ) ) | 
						
							| 27 | 25 26 | mpan2 | ⊢ ( ( ( ( 1 ... 𝐴 )  ∩  ℙ )  ⊆  ( 1 ... 𝐴 )  ∧  ∀ 𝑘  ∈  ( ( 1 ... 𝐴 )  ∩  ℙ ) ( log ‘ 𝑘 )  ∈  ℂ )  →  Σ 𝑘  ∈  ( ( 1 ... 𝐴 )  ∩  ℙ ) ( log ‘ 𝑘 )  =  Σ 𝑘  ∈  ( 1 ... 𝐴 ) if ( 𝑘  ∈  ( ( 1 ... 𝐴 )  ∩  ℙ ) ,  ( log ‘ 𝑘 ) ,  0 ) ) | 
						
							| 28 | 15 23 27 | sylancr | ⊢ ( 𝐴  ∈  ℕ  →  Σ 𝑘  ∈  ( ( 1 ... 𝐴 )  ∩  ℙ ) ( log ‘ 𝑘 )  =  Σ 𝑘  ∈  ( 1 ... 𝐴 ) if ( 𝑘  ∈  ( ( 1 ... 𝐴 )  ∩  ℙ ) ,  ( log ‘ 𝑘 ) ,  0 ) ) | 
						
							| 29 | 14 28 | eqtrd | ⊢ ( 𝐴  ∈  ℕ  →  Σ 𝑘  ∈  ( ( 0 [,] 𝐴 )  ∩  ℙ ) ( log ‘ 𝑘 )  =  Σ 𝑘  ∈  ( 1 ... 𝐴 ) if ( 𝑘  ∈  ( ( 1 ... 𝐴 )  ∩  ℙ ) ,  ( log ‘ 𝑘 ) ,  0 ) ) | 
						
							| 30 | 4 29 | eqtrd | ⊢ ( 𝐴  ∈  ℕ  →  ( θ ‘ 𝐴 )  =  Σ 𝑘  ∈  ( 1 ... 𝐴 ) if ( 𝑘  ∈  ( ( 1 ... 𝐴 )  ∩  ℙ ) ,  ( log ‘ 𝑘 ) ,  0 ) ) | 
						
							| 31 |  | elin | ⊢ ( 𝑘  ∈  ( ( 1 ... 𝐴 )  ∩  ℙ )  ↔  ( 𝑘  ∈  ( 1 ... 𝐴 )  ∧  𝑘  ∈  ℙ ) ) | 
						
							| 32 | 31 | baibr | ⊢ ( 𝑘  ∈  ( 1 ... 𝐴 )  →  ( 𝑘  ∈  ℙ  ↔  𝑘  ∈  ( ( 1 ... 𝐴 )  ∩  ℙ ) ) ) | 
						
							| 33 | 32 | ifbid | ⊢ ( 𝑘  ∈  ( 1 ... 𝐴 )  →  if ( 𝑘  ∈  ℙ ,  ( log ‘ 𝑘 ) ,  0 )  =  if ( 𝑘  ∈  ( ( 1 ... 𝐴 )  ∩  ℙ ) ,  ( log ‘ 𝑘 ) ,  0 ) ) | 
						
							| 34 | 33 | sumeq2i | ⊢ Σ 𝑘  ∈  ( 1 ... 𝐴 ) if ( 𝑘  ∈  ℙ ,  ( log ‘ 𝑘 ) ,  0 )  =  Σ 𝑘  ∈  ( 1 ... 𝐴 ) if ( 𝑘  ∈  ( ( 1 ... 𝐴 )  ∩  ℙ ) ,  ( log ‘ 𝑘 ) ,  0 ) | 
						
							| 35 | 30 34 | eqtr4di | ⊢ ( 𝐴  ∈  ℕ  →  ( θ ‘ 𝐴 )  =  Σ 𝑘  ∈  ( 1 ... 𝐴 ) if ( 𝑘  ∈  ℙ ,  ( log ‘ 𝑘 ) ,  0 ) ) | 
						
							| 36 |  | eleq1w | ⊢ ( 𝑛  =  𝑘  →  ( 𝑛  ∈  ℙ  ↔  𝑘  ∈  ℙ ) ) | 
						
							| 37 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( log ‘ 𝑛 )  =  ( log ‘ 𝑘 ) ) | 
						
							| 38 | 36 37 | ifbieq1d | ⊢ ( 𝑛  =  𝑘  →  if ( 𝑛  ∈  ℙ ,  ( log ‘ 𝑛 ) ,  0 )  =  if ( 𝑘  ∈  ℙ ,  ( log ‘ 𝑘 ) ,  0 ) ) | 
						
							| 39 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( log ‘ 𝑛 ) ,  0 ) )  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( log ‘ 𝑛 ) ,  0 ) ) | 
						
							| 40 |  | fvex | ⊢ ( log ‘ 𝑘 )  ∈  V | 
						
							| 41 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 42 | 41 | elexi | ⊢ 0  ∈  V | 
						
							| 43 | 40 42 | ifex | ⊢ if ( 𝑘  ∈  ℙ ,  ( log ‘ 𝑘 ) ,  0 )  ∈  V | 
						
							| 44 | 38 39 43 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( log ‘ 𝑛 ) ,  0 ) ) ‘ 𝑘 )  =  if ( 𝑘  ∈  ℙ ,  ( log ‘ 𝑘 ) ,  0 ) ) | 
						
							| 45 | 18 44 | syl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝐴 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( log ‘ 𝑛 ) ,  0 ) ) ‘ 𝑘 )  =  if ( 𝑘  ∈  ℙ ,  ( log ‘ 𝑘 ) ,  0 ) ) | 
						
							| 46 |  | elnnuz | ⊢ ( 𝐴  ∈  ℕ  ↔  𝐴  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 47 | 46 | biimpi | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 48 |  | ifcl | ⊢ ( ( ( log ‘ 𝑘 )  ∈  ℂ  ∧  0  ∈  ℂ )  →  if ( 𝑘  ∈  ℙ ,  ( log ‘ 𝑘 ) ,  0 )  ∈  ℂ ) | 
						
							| 49 | 21 41 48 | sylancl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝐴 ) )  →  if ( 𝑘  ∈  ℙ ,  ( log ‘ 𝑘 ) ,  0 )  ∈  ℂ ) | 
						
							| 50 | 45 47 49 | fsumser | ⊢ ( 𝐴  ∈  ℕ  →  Σ 𝑘  ∈  ( 1 ... 𝐴 ) if ( 𝑘  ∈  ℙ ,  ( log ‘ 𝑘 ) ,  0 )  =  ( seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( log ‘ 𝑛 ) ,  0 ) ) ) ‘ 𝐴 ) ) | 
						
							| 51 | 35 50 | eqtrd | ⊢ ( 𝐴  ∈  ℕ  →  ( θ ‘ 𝐴 )  =  ( seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( log ‘ 𝑛 ) ,  0 ) ) ) ‘ 𝐴 ) ) | 
						
							| 52 | 51 | fveq2d | ⊢ ( 𝐴  ∈  ℕ  →  ( exp ‘ ( θ ‘ 𝐴 ) )  =  ( exp ‘ ( seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( log ‘ 𝑛 ) ,  0 ) ) ) ‘ 𝐴 ) ) ) | 
						
							| 53 |  | addcl | ⊢ ( ( 𝑘  ∈  ℂ  ∧  𝑝  ∈  ℂ )  →  ( 𝑘  +  𝑝 )  ∈  ℂ ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  ( 𝑘  ∈  ℂ  ∧  𝑝  ∈  ℂ ) )  →  ( 𝑘  +  𝑝 )  ∈  ℂ ) | 
						
							| 55 | 45 49 | eqeltrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝐴 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( log ‘ 𝑛 ) ,  0 ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 56 |  | efadd | ⊢ ( ( 𝑘  ∈  ℂ  ∧  𝑝  ∈  ℂ )  →  ( exp ‘ ( 𝑘  +  𝑝 ) )  =  ( ( exp ‘ 𝑘 )  ·  ( exp ‘ 𝑝 ) ) ) | 
						
							| 57 | 56 | adantl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  ( 𝑘  ∈  ℂ  ∧  𝑝  ∈  ℂ ) )  →  ( exp ‘ ( 𝑘  +  𝑝 ) )  =  ( ( exp ‘ 𝑘 )  ·  ( exp ‘ 𝑝 ) ) ) | 
						
							| 58 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 59 |  | ifcl | ⊢ ( ( 𝑘  ∈  ℕ  ∧  1  ∈  ℕ )  →  if ( 𝑘  ∈  ℙ ,  𝑘 ,  1 )  ∈  ℕ ) | 
						
							| 60 | 18 58 59 | sylancl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝐴 ) )  →  if ( 𝑘  ∈  ℙ ,  𝑘 ,  1 )  ∈  ℕ ) | 
						
							| 61 | 60 | nnrpd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝐴 ) )  →  if ( 𝑘  ∈  ℙ ,  𝑘 ,  1 )  ∈  ℝ+ ) | 
						
							| 62 | 61 | reeflogd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝐴 ) )  →  ( exp ‘ ( log ‘ if ( 𝑘  ∈  ℙ ,  𝑘 ,  1 ) ) )  =  if ( 𝑘  ∈  ℙ ,  𝑘 ,  1 ) ) | 
						
							| 63 |  | fvif | ⊢ ( log ‘ if ( 𝑘  ∈  ℙ ,  𝑘 ,  1 ) )  =  if ( 𝑘  ∈  ℙ ,  ( log ‘ 𝑘 ) ,  ( log ‘ 1 ) ) | 
						
							| 64 |  | log1 | ⊢ ( log ‘ 1 )  =  0 | 
						
							| 65 |  | ifeq2 | ⊢ ( ( log ‘ 1 )  =  0  →  if ( 𝑘  ∈  ℙ ,  ( log ‘ 𝑘 ) ,  ( log ‘ 1 ) )  =  if ( 𝑘  ∈  ℙ ,  ( log ‘ 𝑘 ) ,  0 ) ) | 
						
							| 66 | 64 65 | ax-mp | ⊢ if ( 𝑘  ∈  ℙ ,  ( log ‘ 𝑘 ) ,  ( log ‘ 1 ) )  =  if ( 𝑘  ∈  ℙ ,  ( log ‘ 𝑘 ) ,  0 ) | 
						
							| 67 | 63 66 | eqtri | ⊢ ( log ‘ if ( 𝑘  ∈  ℙ ,  𝑘 ,  1 ) )  =  if ( 𝑘  ∈  ℙ ,  ( log ‘ 𝑘 ) ,  0 ) | 
						
							| 68 | 45 67 | eqtr4di | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝐴 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( log ‘ 𝑛 ) ,  0 ) ) ‘ 𝑘 )  =  ( log ‘ if ( 𝑘  ∈  ℙ ,  𝑘 ,  1 ) ) ) | 
						
							| 69 | 68 | fveq2d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝐴 ) )  →  ( exp ‘ ( ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( log ‘ 𝑛 ) ,  0 ) ) ‘ 𝑘 ) )  =  ( exp ‘ ( log ‘ if ( 𝑘  ∈  ℙ ,  𝑘 ,  1 ) ) ) ) | 
						
							| 70 |  | id | ⊢ ( 𝑛  =  𝑘  →  𝑛  =  𝑘 ) | 
						
							| 71 | 36 70 | ifbieq1d | ⊢ ( 𝑛  =  𝑘  →  if ( 𝑛  ∈  ℙ ,  𝑛 ,  1 )  =  if ( 𝑘  ∈  ℙ ,  𝑘 ,  1 ) ) | 
						
							| 72 |  | vex | ⊢ 𝑘  ∈  V | 
						
							| 73 | 58 | elexi | ⊢ 1  ∈  V | 
						
							| 74 | 72 73 | ifex | ⊢ if ( 𝑘  ∈  ℙ ,  𝑘 ,  1 )  ∈  V | 
						
							| 75 | 71 1 74 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐹 ‘ 𝑘 )  =  if ( 𝑘  ∈  ℙ ,  𝑘 ,  1 ) ) | 
						
							| 76 | 18 75 | syl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝐴 ) )  →  ( 𝐹 ‘ 𝑘 )  =  if ( 𝑘  ∈  ℙ ,  𝑘 ,  1 ) ) | 
						
							| 77 | 62 69 76 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝐴 ) )  →  ( exp ‘ ( ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( log ‘ 𝑛 ) ,  0 ) ) ‘ 𝑘 ) )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 78 | 54 55 47 57 77 | seqhomo | ⊢ ( 𝐴  ∈  ℕ  →  ( exp ‘ ( seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( log ‘ 𝑛 ) ,  0 ) ) ) ‘ 𝐴 ) )  =  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐴 ) ) | 
						
							| 79 | 52 78 | eqtrd | ⊢ ( 𝐴  ∈  ℕ  →  ( exp ‘ ( θ ‘ 𝐴 ) )  =  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐴 ) ) |