| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							prmrec.f | 
							⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  Σ 𝑘  ∈  ( ℙ  ∩  ( 1 ... 𝑛 ) ) ( 1  /  𝑘 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							inss2 | 
							⊢ ( ℙ  ∩  ( 1 ... 𝑛 ) )  ⊆  ( 1 ... 𝑛 )  | 
						
						
							| 3 | 
							
								
							 | 
							elinel2 | 
							⊢ ( 𝑘  ∈  ( ℙ  ∩  ( 1 ... 𝑛 ) )  →  𝑘  ∈  ( 1 ... 𝑛 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							elfznn | 
							⊢ ( 𝑘  ∈  ( 1 ... 𝑛 )  →  𝑘  ∈  ℕ )  | 
						
						
							| 5 | 
							
								
							 | 
							nnrecre | 
							⊢ ( 𝑘  ∈  ℕ  →  ( 1  /  𝑘 )  ∈  ℝ )  | 
						
						
							| 6 | 
							
								5
							 | 
							recnd | 
							⊢ ( 𝑘  ∈  ℕ  →  ( 1  /  𝑘 )  ∈  ℂ )  | 
						
						
							| 7 | 
							
								3 4 6
							 | 
							3syl | 
							⊢ ( 𝑘  ∈  ( ℙ  ∩  ( 1 ... 𝑛 ) )  →  ( 1  /  𝑘 )  ∈  ℂ )  | 
						
						
							| 8 | 
							
								7
							 | 
							rgen | 
							⊢ ∀ 𝑘  ∈  ( ℙ  ∩  ( 1 ... 𝑛 ) ) ( 1  /  𝑘 )  ∈  ℂ  | 
						
						
							| 9 | 
							
								2 8
							 | 
							pm3.2i | 
							⊢ ( ( ℙ  ∩  ( 1 ... 𝑛 ) )  ⊆  ( 1 ... 𝑛 )  ∧  ∀ 𝑘  ∈  ( ℙ  ∩  ( 1 ... 𝑛 ) ) ( 1  /  𝑘 )  ∈  ℂ )  | 
						
						
							| 10 | 
							
								
							 | 
							fzfi | 
							⊢ ( 1 ... 𝑛 )  ∈  Fin  | 
						
						
							| 11 | 
							
								10
							 | 
							olci | 
							⊢ ( ( 1 ... 𝑛 )  ⊆  ( ℤ≥ ‘ 1 )  ∨  ( 1 ... 𝑛 )  ∈  Fin )  | 
						
						
							| 12 | 
							
								
							 | 
							sumss2 | 
							⊢ ( ( ( ( ℙ  ∩  ( 1 ... 𝑛 ) )  ⊆  ( 1 ... 𝑛 )  ∧  ∀ 𝑘  ∈  ( ℙ  ∩  ( 1 ... 𝑛 ) ) ( 1  /  𝑘 )  ∈  ℂ )  ∧  ( ( 1 ... 𝑛 )  ⊆  ( ℤ≥ ‘ 1 )  ∨  ( 1 ... 𝑛 )  ∈  Fin ) )  →  Σ 𝑘  ∈  ( ℙ  ∩  ( 1 ... 𝑛 ) ) ( 1  /  𝑘 )  =  Σ 𝑘  ∈  ( 1 ... 𝑛 ) if ( 𝑘  ∈  ( ℙ  ∩  ( 1 ... 𝑛 ) ) ,  ( 1  /  𝑘 ) ,  0 ) )  | 
						
						
							| 13 | 
							
								9 11 12
							 | 
							mp2an | 
							⊢ Σ 𝑘  ∈  ( ℙ  ∩  ( 1 ... 𝑛 ) ) ( 1  /  𝑘 )  =  Σ 𝑘  ∈  ( 1 ... 𝑛 ) if ( 𝑘  ∈  ( ℙ  ∩  ( 1 ... 𝑛 ) ) ,  ( 1  /  𝑘 ) ,  0 )  | 
						
						
							| 14 | 
							
								
							 | 
							elin | 
							⊢ ( 𝑘  ∈  ( ℙ  ∩  ( 1 ... 𝑛 ) )  ↔  ( 𝑘  ∈  ℙ  ∧  𝑘  ∈  ( 1 ... 𝑛 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							rbaib | 
							⊢ ( 𝑘  ∈  ( 1 ... 𝑛 )  →  ( 𝑘  ∈  ( ℙ  ∩  ( 1 ... 𝑛 ) )  ↔  𝑘  ∈  ℙ ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							ifbid | 
							⊢ ( 𝑘  ∈  ( 1 ... 𝑛 )  →  if ( 𝑘  ∈  ( ℙ  ∩  ( 1 ... 𝑛 ) ) ,  ( 1  /  𝑘 ) ,  0 )  =  if ( 𝑘  ∈  ℙ ,  ( 1  /  𝑘 ) ,  0 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							sumeq2i | 
							⊢ Σ 𝑘  ∈  ( 1 ... 𝑛 ) if ( 𝑘  ∈  ( ℙ  ∩  ( 1 ... 𝑛 ) ) ,  ( 1  /  𝑘 ) ,  0 )  =  Σ 𝑘  ∈  ( 1 ... 𝑛 ) if ( 𝑘  ∈  ℙ ,  ( 1  /  𝑘 ) ,  0 )  | 
						
						
							| 18 | 
							
								13 17
							 | 
							eqtri | 
							⊢ Σ 𝑘  ∈  ( ℙ  ∩  ( 1 ... 𝑛 ) ) ( 1  /  𝑘 )  =  Σ 𝑘  ∈  ( 1 ... 𝑛 ) if ( 𝑘  ∈  ℙ ,  ( 1  /  𝑘 ) ,  0 )  | 
						
						
							| 19 | 
							
								4
							 | 
							adantl | 
							⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝑘  ∈  ℕ )  | 
						
						
							| 20 | 
							
								
							 | 
							prmnn | 
							⊢ ( 𝑘  ∈  ℙ  →  𝑘  ∈  ℕ )  | 
						
						
							| 21 | 
							
								20 6
							 | 
							syl | 
							⊢ ( 𝑘  ∈  ℙ  →  ( 1  /  𝑘 )  ∈  ℂ )  | 
						
						
							| 22 | 
							
								21
							 | 
							adantl | 
							⊢ ( ( ⊤  ∧  𝑘  ∈  ℙ )  →  ( 1  /  𝑘 )  ∈  ℂ )  | 
						
						
							| 23 | 
							
								
							 | 
							0cnd | 
							⊢ ( ( ⊤  ∧  ¬  𝑘  ∈  ℙ )  →  0  ∈  ℂ )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							ifclda | 
							⊢ ( ⊤  →  if ( 𝑘  ∈  ℙ ,  ( 1  /  𝑘 ) ,  0 )  ∈  ℂ )  | 
						
						
							| 25 | 
							
								24
							 | 
							mptru | 
							⊢ if ( 𝑘  ∈  ℙ ,  ( 1  /  𝑘 ) ,  0 )  ∈  ℂ  | 
						
						
							| 26 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑚  =  𝑘  →  ( 𝑚  ∈  ℙ  ↔  𝑘  ∈  ℙ ) )  | 
						
						
							| 27 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑚  =  𝑘  →  ( 1  /  𝑚 )  =  ( 1  /  𝑘 ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							ifbieq1d | 
							⊢ ( 𝑚  =  𝑘  →  if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 )  =  if ( 𝑘  ∈  ℙ ,  ( 1  /  𝑘 ) ,  0 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							cbvmptv | 
							⊢ ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 ) )  =  ( 𝑘  ∈  ℕ  ↦  if ( 𝑘  ∈  ℙ ,  ( 1  /  𝑘 ) ,  0 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							fvmpt2 | 
							⊢ ( ( 𝑘  ∈  ℕ  ∧  if ( 𝑘  ∈  ℙ ,  ( 1  /  𝑘 ) ,  0 )  ∈  ℂ )  →  ( ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 ) ) ‘ 𝑘 )  =  if ( 𝑘  ∈  ℙ ,  ( 1  /  𝑘 ) ,  0 ) )  | 
						
						
							| 31 | 
							
								19 25 30
							 | 
							sylancl | 
							⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 ) ) ‘ 𝑘 )  =  if ( 𝑘  ∈  ℙ ,  ( 1  /  𝑘 ) ,  0 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							id | 
							⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ )  | 
						
						
							| 33 | 
							
								
							 | 
							nnuz | 
							⊢ ℕ  =  ( ℤ≥ ‘ 1 )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							eleqtrdi | 
							⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 35 | 
							
								25
							 | 
							a1i | 
							⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  if ( 𝑘  ∈  ℙ ,  ( 1  /  𝑘 ) ,  0 )  ∈  ℂ )  | 
						
						
							| 36 | 
							
								31 34 35
							 | 
							fsumser | 
							⊢ ( 𝑛  ∈  ℕ  →  Σ 𝑘  ∈  ( 1 ... 𝑛 ) if ( 𝑘  ∈  ℙ ,  ( 1  /  𝑘 ) ,  0 )  =  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 ) ) ) ‘ 𝑛 ) )  | 
						
						
							| 37 | 
							
								18 36
							 | 
							eqtrid | 
							⊢ ( 𝑛  ∈  ℕ  →  Σ 𝑘  ∈  ( ℙ  ∩  ( 1 ... 𝑛 ) ) ( 1  /  𝑘 )  =  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 ) ) ) ‘ 𝑛 ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							mpteq2ia | 
							⊢ ( 𝑛  ∈  ℕ  ↦  Σ 𝑘  ∈  ( ℙ  ∩  ( 1 ... 𝑛 ) ) ( 1  /  𝑘 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 ) ) ) ‘ 𝑛 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							1z | 
							⊢ 1  ∈  ℤ  | 
						
						
							| 40 | 
							
								
							 | 
							seqfn | 
							⊢ ( 1  ∈  ℤ  →  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 ) ) )  Fn  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							ax-mp | 
							⊢ seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 ) ) )  Fn  ( ℤ≥ ‘ 1 )  | 
						
						
							| 42 | 
							
								33
							 | 
							fneq2i | 
							⊢ ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 ) ) )  Fn  ℕ  ↔  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 ) ) )  Fn  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							mpbir | 
							⊢ seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 ) ) )  Fn  ℕ  | 
						
						
							| 44 | 
							
								
							 | 
							dffn5 | 
							⊢ ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 ) ) )  Fn  ℕ  ↔  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 ) ) ) ‘ 𝑛 ) ) )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							mpbi | 
							⊢ seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 ) ) ) ‘ 𝑛 ) )  | 
						
						
							| 46 | 
							
								38 1 45
							 | 
							3eqtr4i | 
							⊢ 𝐹  =  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 ) ) )  | 
						
						
							| 47 | 
							
								29
							 | 
							prmreclem6 | 
							⊢ ¬  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 ) ) )  ∈  dom   ⇝   | 
						
						
							| 48 | 
							
								46 47
							 | 
							eqneltri | 
							⊢ ¬  𝐹  ∈  dom   ⇝   |