Step |
Hyp |
Ref |
Expression |
1 |
|
prmreclem1.1 |
⊢ 𝑄 = ( 𝑛 ∈ ℕ ↦ sup ( { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑛 } , ℝ , < ) ) |
2 |
|
ssrab2 |
⊢ { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } ⊆ ℕ |
3 |
|
breq2 |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑟 ↑ 2 ) ∥ 𝑛 ↔ ( 𝑟 ↑ 2 ) ∥ 𝑁 ) ) |
4 |
3
|
rabbidv |
⊢ ( 𝑛 = 𝑁 → { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑛 } = { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } ) |
5 |
4
|
supeq1d |
⊢ ( 𝑛 = 𝑁 → sup ( { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑛 } , ℝ , < ) = sup ( { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } , ℝ , < ) ) |
6 |
|
ltso |
⊢ < Or ℝ |
7 |
6
|
supex |
⊢ sup ( { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } , ℝ , < ) ∈ V |
8 |
5 1 7
|
fvmpt |
⊢ ( 𝑁 ∈ ℕ → ( 𝑄 ‘ 𝑁 ) = sup ( { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } , ℝ , < ) ) |
9 |
|
nnssz |
⊢ ℕ ⊆ ℤ |
10 |
2 9
|
sstri |
⊢ { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } ⊆ ℤ |
11 |
|
oveq1 |
⊢ ( 𝑟 = 1 → ( 𝑟 ↑ 2 ) = ( 1 ↑ 2 ) ) |
12 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
13 |
11 12
|
eqtrdi |
⊢ ( 𝑟 = 1 → ( 𝑟 ↑ 2 ) = 1 ) |
14 |
13
|
breq1d |
⊢ ( 𝑟 = 1 → ( ( 𝑟 ↑ 2 ) ∥ 𝑁 ↔ 1 ∥ 𝑁 ) ) |
15 |
|
1nn |
⊢ 1 ∈ ℕ |
16 |
15
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℕ ) |
17 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
18 |
|
1dvds |
⊢ ( 𝑁 ∈ ℤ → 1 ∥ 𝑁 ) |
19 |
17 18
|
syl |
⊢ ( 𝑁 ∈ ℕ → 1 ∥ 𝑁 ) |
20 |
14 16 19
|
elrabd |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } ) |
21 |
20
|
ne0d |
⊢ ( 𝑁 ∈ ℕ → { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } ≠ ∅ ) |
22 |
|
nnz |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℤ ) |
23 |
|
zsqcl |
⊢ ( 𝑧 ∈ ℤ → ( 𝑧 ↑ 2 ) ∈ ℤ ) |
24 |
22 23
|
syl |
⊢ ( 𝑧 ∈ ℕ → ( 𝑧 ↑ 2 ) ∈ ℤ ) |
25 |
|
id |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) |
26 |
|
dvdsle |
⊢ ( ( ( 𝑧 ↑ 2 ) ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑧 ↑ 2 ) ∥ 𝑁 → ( 𝑧 ↑ 2 ) ≤ 𝑁 ) ) |
27 |
24 25 26
|
syl2anr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑧 ↑ 2 ) ∥ 𝑁 → ( 𝑧 ↑ 2 ) ≤ 𝑁 ) ) |
28 |
|
nnlesq |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ≤ ( 𝑧 ↑ 2 ) ) |
29 |
28
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → 𝑧 ≤ ( 𝑧 ↑ 2 ) ) |
30 |
|
nnre |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℝ ) |
31 |
30
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → 𝑧 ∈ ℝ ) |
32 |
31
|
resqcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( 𝑧 ↑ 2 ) ∈ ℝ ) |
33 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
34 |
33
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
35 |
|
letr |
⊢ ( ( 𝑧 ∈ ℝ ∧ ( 𝑧 ↑ 2 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑧 ≤ ( 𝑧 ↑ 2 ) ∧ ( 𝑧 ↑ 2 ) ≤ 𝑁 ) → 𝑧 ≤ 𝑁 ) ) |
36 |
31 32 34 35
|
syl3anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑧 ≤ ( 𝑧 ↑ 2 ) ∧ ( 𝑧 ↑ 2 ) ≤ 𝑁 ) → 𝑧 ≤ 𝑁 ) ) |
37 |
29 36
|
mpand |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑧 ↑ 2 ) ≤ 𝑁 → 𝑧 ≤ 𝑁 ) ) |
38 |
27 37
|
syld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑧 ↑ 2 ) ∥ 𝑁 → 𝑧 ≤ 𝑁 ) ) |
39 |
38
|
ralrimiva |
⊢ ( 𝑁 ∈ ℕ → ∀ 𝑧 ∈ ℕ ( ( 𝑧 ↑ 2 ) ∥ 𝑁 → 𝑧 ≤ 𝑁 ) ) |
40 |
|
oveq1 |
⊢ ( 𝑟 = 𝑧 → ( 𝑟 ↑ 2 ) = ( 𝑧 ↑ 2 ) ) |
41 |
40
|
breq1d |
⊢ ( 𝑟 = 𝑧 → ( ( 𝑟 ↑ 2 ) ∥ 𝑁 ↔ ( 𝑧 ↑ 2 ) ∥ 𝑁 ) ) |
42 |
41
|
ralrab |
⊢ ( ∀ 𝑧 ∈ { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } 𝑧 ≤ 𝑁 ↔ ∀ 𝑧 ∈ ℕ ( ( 𝑧 ↑ 2 ) ∥ 𝑁 → 𝑧 ≤ 𝑁 ) ) |
43 |
39 42
|
sylibr |
⊢ ( 𝑁 ∈ ℕ → ∀ 𝑧 ∈ { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } 𝑧 ≤ 𝑁 ) |
44 |
|
brralrspcev |
⊢ ( ( 𝑁 ∈ ℤ ∧ ∀ 𝑧 ∈ { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } 𝑧 ≤ 𝑁 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑧 ∈ { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } 𝑧 ≤ 𝑥 ) |
45 |
17 43 44
|
syl2anc |
⊢ ( 𝑁 ∈ ℕ → ∃ 𝑥 ∈ ℤ ∀ 𝑧 ∈ { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } 𝑧 ≤ 𝑥 ) |
46 |
|
suprzcl2 |
⊢ ( ( { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } ⊆ ℤ ∧ { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑧 ∈ { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } 𝑧 ≤ 𝑥 ) → sup ( { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } , ℝ , < ) ∈ { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } ) |
47 |
10 21 45 46
|
mp3an2i |
⊢ ( 𝑁 ∈ ℕ → sup ( { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } , ℝ , < ) ∈ { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } ) |
48 |
8 47
|
eqeltrd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑄 ‘ 𝑁 ) ∈ { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } ) |
49 |
2 48
|
sselid |
⊢ ( 𝑁 ∈ ℕ → ( 𝑄 ‘ 𝑁 ) ∈ ℕ ) |
50 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝑄 ‘ 𝑁 ) → ( 𝑧 ↑ 2 ) = ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) |
51 |
50
|
breq1d |
⊢ ( 𝑧 = ( 𝑄 ‘ 𝑁 ) → ( ( 𝑧 ↑ 2 ) ∥ 𝑁 ↔ ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ∥ 𝑁 ) ) |
52 |
41
|
cbvrabv |
⊢ { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } = { 𝑧 ∈ ℕ ∣ ( 𝑧 ↑ 2 ) ∥ 𝑁 } |
53 |
51 52
|
elrab2 |
⊢ ( ( 𝑄 ‘ 𝑁 ) ∈ { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } ↔ ( ( 𝑄 ‘ 𝑁 ) ∈ ℕ ∧ ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ∥ 𝑁 ) ) |
54 |
48 53
|
sylib |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑄 ‘ 𝑁 ) ∈ ℕ ∧ ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ∥ 𝑁 ) ) |
55 |
54
|
simprd |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ∥ 𝑁 ) |
56 |
49
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑄 ‘ 𝑁 ) ∈ ℕ ) |
57 |
56
|
nncnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑄 ‘ 𝑁 ) ∈ ℂ ) |
58 |
57
|
mulid1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑄 ‘ 𝑁 ) · 1 ) = ( 𝑄 ‘ 𝑁 ) ) |
59 |
|
eluz2gt1 |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝐾 ) |
60 |
59
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) → 1 < 𝐾 ) |
61 |
|
1red |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) → 1 ∈ ℝ ) |
62 |
|
eluz2nn |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 2 ) → 𝐾 ∈ ℕ ) |
63 |
62
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐾 ∈ ℕ ) |
64 |
63
|
nnred |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐾 ∈ ℝ ) |
65 |
56
|
nnred |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑄 ‘ 𝑁 ) ∈ ℝ ) |
66 |
56
|
nngt0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) → 0 < ( 𝑄 ‘ 𝑁 ) ) |
67 |
|
ltmul2 |
⊢ ( ( 1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ ( ( 𝑄 ‘ 𝑁 ) ∈ ℝ ∧ 0 < ( 𝑄 ‘ 𝑁 ) ) ) → ( 1 < 𝐾 ↔ ( ( 𝑄 ‘ 𝑁 ) · 1 ) < ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ) ) |
68 |
61 64 65 66 67
|
syl112anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) → ( 1 < 𝐾 ↔ ( ( 𝑄 ‘ 𝑁 ) · 1 ) < ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ) ) |
69 |
60 68
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑄 ‘ 𝑁 ) · 1 ) < ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ) |
70 |
58 69
|
eqbrtrrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑄 ‘ 𝑁 ) < ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ) |
71 |
|
nnmulcl |
⊢ ( ( ( 𝑄 ‘ 𝑁 ) ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ∈ ℕ ) |
72 |
49 62 71
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ∈ ℕ ) |
73 |
72
|
nnred |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ∈ ℝ ) |
74 |
65 73
|
ltnled |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑄 ‘ 𝑁 ) < ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ↔ ¬ ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ≤ ( 𝑄 ‘ 𝑁 ) ) ) |
75 |
70 74
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) → ¬ ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ≤ ( 𝑄 ‘ 𝑁 ) ) |
76 |
45
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ∃ 𝑥 ∈ ℤ ∀ 𝑧 ∈ { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } 𝑧 ≤ 𝑥 ) |
77 |
|
oveq1 |
⊢ ( 𝑟 = ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) → ( 𝑟 ↑ 2 ) = ( ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ↑ 2 ) ) |
78 |
77
|
breq1d |
⊢ ( 𝑟 = ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) → ( ( 𝑟 ↑ 2 ) ∥ 𝑁 ↔ ( ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ↑ 2 ) ∥ 𝑁 ) ) |
79 |
72
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ∈ ℕ ) |
80 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) |
81 |
63
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → 𝐾 ∈ ℕ ) |
82 |
81
|
nnsqcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ( 𝐾 ↑ 2 ) ∈ ℕ ) |
83 |
|
nnz |
⊢ ( ( 𝐾 ↑ 2 ) ∈ ℕ → ( 𝐾 ↑ 2 ) ∈ ℤ ) |
84 |
82 83
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ( 𝐾 ↑ 2 ) ∈ ℤ ) |
85 |
49
|
nnsqcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ∈ ℕ ) |
86 |
9 85
|
sselid |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ∈ ℤ ) |
87 |
85
|
nnne0d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ≠ 0 ) |
88 |
|
dvdsval2 |
⊢ ( ( ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ∈ ℤ ∧ ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ∥ 𝑁 ↔ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ∈ ℤ ) ) |
89 |
86 87 17 88
|
syl3anc |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ∥ 𝑁 ↔ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ∈ ℤ ) ) |
90 |
55 89
|
mpbid |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ∈ ℤ ) |
91 |
90
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ∈ ℤ ) |
92 |
86
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ∈ ℤ ) |
93 |
|
dvdscmul |
⊢ ( ( ( 𝐾 ↑ 2 ) ∈ ℤ ∧ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ∈ ℤ ∧ ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ∈ ℤ ) → ( ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) → ( ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) · ( 𝐾 ↑ 2 ) ) ∥ ( ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) · ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) ) ) |
94 |
84 91 92 93
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ( ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) → ( ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) · ( 𝐾 ↑ 2 ) ) ∥ ( ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) · ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) ) ) |
95 |
80 94
|
mpd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ( ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) · ( 𝐾 ↑ 2 ) ) ∥ ( ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) · ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) ) |
96 |
57
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ( 𝑄 ‘ 𝑁 ) ∈ ℂ ) |
97 |
81
|
nncnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → 𝐾 ∈ ℂ ) |
98 |
96 97
|
sqmuld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ( ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ↑ 2 ) = ( ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) · ( 𝐾 ↑ 2 ) ) ) |
99 |
98
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ( ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) · ( 𝐾 ↑ 2 ) ) = ( ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ↑ 2 ) ) |
100 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
101 |
100
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → 𝑁 ∈ ℂ ) |
102 |
85
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ∈ ℕ ) |
103 |
102
|
nncnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ∈ ℂ ) |
104 |
87
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ≠ 0 ) |
105 |
101 103 104
|
divcan2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ( ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) · ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) = 𝑁 ) |
106 |
95 99 105
|
3brtr3d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ( ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ↑ 2 ) ∥ 𝑁 ) |
107 |
78 79 106
|
elrabd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ∈ { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } ) |
108 |
|
suprzub |
⊢ ( ( { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑧 ∈ { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } 𝑧 ≤ 𝑥 ∧ ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ∈ { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } ) → ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ≤ sup ( { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } , ℝ , < ) ) |
109 |
10 76 107 108
|
mp3an2i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ≤ sup ( { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } , ℝ , < ) ) |
110 |
8
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ( 𝑄 ‘ 𝑁 ) = sup ( { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑁 } , ℝ , < ) ) |
111 |
109 110
|
breqtrrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) → ( ( 𝑄 ‘ 𝑁 ) · 𝐾 ) ≤ ( 𝑄 ‘ 𝑁 ) ) |
112 |
75 111
|
mtand |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) → ¬ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) |
113 |
112
|
ex |
⊢ ( 𝑁 ∈ ℕ → ( 𝐾 ∈ ( ℤ≥ ‘ 2 ) → ¬ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) ) |
114 |
49 55 113
|
3jca |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑄 ‘ 𝑁 ) ∈ ℕ ∧ ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ∥ 𝑁 ∧ ( 𝐾 ∈ ( ℤ≥ ‘ 2 ) → ¬ ( 𝐾 ↑ 2 ) ∥ ( 𝑁 / ( ( 𝑄 ‘ 𝑁 ) ↑ 2 ) ) ) ) ) |