Step |
Hyp |
Ref |
Expression |
1 |
|
prmrec.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 1 / 𝑛 ) , 0 ) ) |
2 |
|
prmrec.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
3 |
|
prmrec.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
prmrec.4 |
⊢ 𝑀 = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑛 } |
5 |
|
prmreclem2.5 |
⊢ 𝑄 = ( 𝑛 ∈ ℕ ↦ sup ( { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑛 } , ℝ , < ) ) |
6 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
7 |
4
|
ssrab3 |
⊢ 𝑀 ⊆ ( 1 ... 𝑁 ) |
8 |
|
ssfi |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ 𝑀 ⊆ ( 1 ... 𝑁 ) ) → 𝑀 ∈ Fin ) |
9 |
6 7 8
|
mp2an |
⊢ 𝑀 ∈ Fin |
10 |
|
hashcl |
⊢ ( 𝑀 ∈ Fin → ( ♯ ‘ 𝑀 ) ∈ ℕ0 ) |
11 |
9 10
|
ax-mp |
⊢ ( ♯ ‘ 𝑀 ) ∈ ℕ0 |
12 |
11
|
nn0rei |
⊢ ( ♯ ‘ 𝑀 ) ∈ ℝ |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( ♯ ‘ 𝑀 ) ∈ ℝ ) |
14 |
|
2nn |
⊢ 2 ∈ ℕ |
15 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
16 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ) → ( 2 ↑ 𝐾 ) ∈ ℕ ) |
17 |
14 15 16
|
sylancr |
⊢ ( 𝜑 → ( 2 ↑ 𝐾 ) ∈ ℕ ) |
18 |
17
|
nnnn0d |
⊢ ( 𝜑 → ( 2 ↑ 𝐾 ) ∈ ℕ0 ) |
19 |
3
|
nnrpd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ+ ) |
20 |
19
|
rpsqrtcld |
⊢ ( 𝜑 → ( √ ‘ 𝑁 ) ∈ ℝ+ ) |
21 |
20
|
rprege0d |
⊢ ( 𝜑 → ( ( √ ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝑁 ) ) ) |
22 |
|
flge0nn0 |
⊢ ( ( ( √ ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝑁 ) ) → ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℕ0 ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℕ0 ) |
24 |
18 23
|
nn0mulcld |
⊢ ( 𝜑 → ( ( 2 ↑ 𝐾 ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ ℕ0 ) |
25 |
24
|
nn0red |
⊢ ( 𝜑 → ( ( 2 ↑ 𝐾 ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ ℝ ) |
26 |
17
|
nnred |
⊢ ( 𝜑 → ( 2 ↑ 𝐾 ) ∈ ℝ ) |
27 |
20
|
rpred |
⊢ ( 𝜑 → ( √ ‘ 𝑁 ) ∈ ℝ ) |
28 |
26 27
|
remulcld |
⊢ ( 𝜑 → ( ( 2 ↑ 𝐾 ) · ( √ ‘ 𝑁 ) ) ∈ ℝ ) |
29 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ⊆ 𝑀 |
30 |
|
ssfi |
⊢ ( ( 𝑀 ∈ Fin ∧ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ⊆ 𝑀 ) → { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ∈ Fin ) |
31 |
9 29 30
|
mp2an |
⊢ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ∈ Fin |
32 |
|
hashcl |
⊢ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ∈ Fin → ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) ∈ ℕ0 ) |
33 |
31 32
|
ax-mp |
⊢ ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) ∈ ℕ0 |
34 |
33
|
nn0rei |
⊢ ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) ∈ ℝ |
35 |
23
|
nn0red |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℝ ) |
36 |
|
remulcl |
⊢ ( ( ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) ∈ ℝ ∧ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℝ ) → ( ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ ℝ ) |
37 |
34 35 36
|
sylancr |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ ℝ ) |
38 |
|
fzfi |
⊢ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ Fin |
39 |
|
xpfi |
⊢ ( ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ∈ Fin ∧ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ Fin ) → ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ∈ Fin ) |
40 |
31 38 39
|
mp2an |
⊢ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ∈ Fin |
41 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) → ( ( 𝑄 ‘ 𝑥 ) = 1 ↔ ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) = 1 ) ) |
42 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑦 ∈ 𝑀 ) |
43 |
7 42
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑦 ∈ ( 1 ... 𝑁 ) ) |
44 |
|
elfznn |
⊢ ( 𝑦 ∈ ( 1 ... 𝑁 ) → 𝑦 ∈ ℕ ) |
45 |
43 44
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑦 ∈ ℕ ) |
46 |
5
|
prmreclem1 |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝑄 ‘ 𝑦 ) ∈ ℕ ∧ ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∥ 𝑦 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) → ¬ ( 𝑛 ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
47 |
46
|
simp2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∥ 𝑦 ) |
48 |
45 47
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∥ 𝑦 ) |
49 |
46
|
simp1d |
⊢ ( 𝑦 ∈ ℕ → ( 𝑄 ‘ 𝑦 ) ∈ ℕ ) |
50 |
45 49
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑄 ‘ 𝑦 ) ∈ ℕ ) |
51 |
50
|
nnsqcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℕ ) |
52 |
51
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℤ ) |
53 |
51
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ≠ 0 ) |
54 |
45
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑦 ∈ ℤ ) |
55 |
|
dvdsval2 |
⊢ ( ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℤ ∧ ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ≠ 0 ∧ 𝑦 ∈ ℤ ) → ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∥ 𝑦 ↔ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℤ ) ) |
56 |
52 53 54 55
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∥ 𝑦 ↔ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℤ ) ) |
57 |
48 56
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℤ ) |
58 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
59 |
|
nngt0 |
⊢ ( 𝑦 ∈ ℕ → 0 < 𝑦 ) |
60 |
58 59
|
jca |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) ) |
61 |
|
nnre |
⊢ ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℕ → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℝ ) |
62 |
|
nngt0 |
⊢ ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℕ → 0 < ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) |
63 |
61 62
|
jca |
⊢ ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℕ → ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℝ ∧ 0 < ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) |
64 |
|
divgt0 |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) ∧ ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℝ ∧ 0 < ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) → 0 < ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) |
65 |
60 63 64
|
syl2an |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℕ ) → 0 < ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) |
66 |
45 51 65
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 0 < ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) |
67 |
|
elnnz |
⊢ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℕ ↔ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℤ ∧ 0 < ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
68 |
57 66 67
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℕ ) |
69 |
68
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℝ ) |
70 |
45
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑦 ∈ ℝ ) |
71 |
3
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑁 ∈ ℝ ) |
73 |
|
dvdsmul1 |
⊢ ( ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℤ ∧ ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℤ ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∥ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) |
74 |
57 52 73
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∥ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) |
75 |
45
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑦 ∈ ℂ ) |
76 |
51
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℂ ) |
77 |
75 76 53
|
divcan1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) = 𝑦 ) |
78 |
74 77
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∥ 𝑦 ) |
79 |
|
dvdsle |
⊢ ( ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∥ 𝑦 → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ≤ 𝑦 ) ) |
80 |
57 45 79
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∥ 𝑦 → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ≤ 𝑦 ) ) |
81 |
78 80
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ≤ 𝑦 ) |
82 |
|
elfzle2 |
⊢ ( 𝑦 ∈ ( 1 ... 𝑁 ) → 𝑦 ≤ 𝑁 ) |
83 |
43 82
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑦 ≤ 𝑁 ) |
84 |
69 70 72 81 83
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ≤ 𝑁 ) |
85 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
86 |
68 85
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ( ℤ≥ ‘ 1 ) ) |
87 |
3
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
88 |
87
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑁 ∈ ℤ ) |
89 |
|
elfz5 |
⊢ ( ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ( 1 ... 𝑁 ) ↔ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ≤ 𝑁 ) ) |
90 |
86 88 89
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ( 1 ... 𝑁 ) ↔ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ≤ 𝑁 ) ) |
91 |
84 90
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ( 1 ... 𝑁 ) ) |
92 |
|
breq2 |
⊢ ( 𝑛 = 𝑦 → ( 𝑝 ∥ 𝑛 ↔ 𝑝 ∥ 𝑦 ) ) |
93 |
92
|
notbid |
⊢ ( 𝑛 = 𝑦 → ( ¬ 𝑝 ∥ 𝑛 ↔ ¬ 𝑝 ∥ 𝑦 ) ) |
94 |
93
|
ralbidv |
⊢ ( 𝑛 = 𝑦 → ( ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑛 ↔ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑦 ) ) |
95 |
94 4
|
elrab2 |
⊢ ( 𝑦 ∈ 𝑀 ↔ ( 𝑦 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑦 ) ) |
96 |
42 95
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑦 ) ) |
97 |
96
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑦 ) |
98 |
78
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∥ 𝑦 ) |
99 |
|
eldifi |
⊢ ( 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) → 𝑝 ∈ ℙ ) |
100 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
101 |
99 100
|
syl |
⊢ ( 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) → 𝑝 ∈ ℤ ) |
102 |
101
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → 𝑝 ∈ ℤ ) |
103 |
57
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℤ ) |
104 |
54
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → 𝑦 ∈ ℤ ) |
105 |
|
dvdstr |
⊢ ( ( 𝑝 ∈ ℤ ∧ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( 𝑝 ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∧ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∥ 𝑦 ) → 𝑝 ∥ 𝑦 ) ) |
106 |
102 103 104 105
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → ( ( 𝑝 ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∧ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∥ 𝑦 ) → 𝑝 ∥ 𝑦 ) ) |
107 |
98 106
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → ( 𝑝 ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) → 𝑝 ∥ 𝑦 ) ) |
108 |
107
|
con3d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → ( ¬ 𝑝 ∥ 𝑦 → ¬ 𝑝 ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
109 |
108
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑦 → ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
110 |
97 109
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) |
111 |
|
breq2 |
⊢ ( 𝑛 = ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) → ( 𝑝 ∥ 𝑛 ↔ 𝑝 ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
112 |
111
|
notbid |
⊢ ( 𝑛 = ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) → ( ¬ 𝑝 ∥ 𝑛 ↔ ¬ 𝑝 ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
113 |
112
|
ralbidv |
⊢ ( 𝑛 = ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) → ( ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑛 ↔ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
114 |
113 4
|
elrab2 |
⊢ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ 𝑀 ↔ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
115 |
91 110 114
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ 𝑀 ) |
116 |
5
|
prmreclem1 |
⊢ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℕ → ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ∈ ℕ ∧ ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∧ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ¬ ( 𝐴 ↑ 2 ) ∥ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) / ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ) ) ) ) |
117 |
116
|
simp2d |
⊢ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℕ → ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) |
118 |
68 117
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) |
119 |
116
|
simp1d |
⊢ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℕ → ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ∈ ℕ ) |
120 |
68 119
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ∈ ℕ ) |
121 |
|
elnn1uz2 |
⊢ ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ∈ ℕ ↔ ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) = 1 ∨ ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
122 |
120 121
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) = 1 ∨ ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
123 |
122
|
ord |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ¬ ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) = 1 → ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
124 |
5
|
prmreclem1 |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝑄 ‘ 𝑦 ) ∈ ℕ ∧ ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∥ 𝑦 ∧ ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ∈ ( ℤ≥ ‘ 2 ) → ¬ ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
125 |
124
|
simp3d |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ∈ ( ℤ≥ ‘ 2 ) → ¬ ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
126 |
45 123 125
|
sylsyld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ¬ ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) = 1 → ¬ ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
127 |
118 126
|
mt4d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) = 1 ) |
128 |
41 115 127
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) |
129 |
51
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℝ ) |
130 |
|
dvdsle |
⊢ ( ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∥ 𝑦 → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ≤ 𝑦 ) ) |
131 |
52 45 130
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∥ 𝑦 → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ≤ 𝑦 ) ) |
132 |
48 131
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ≤ 𝑦 ) |
133 |
129 70 72 132 83
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ≤ 𝑁 ) |
134 |
72
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑁 ∈ ℂ ) |
135 |
134
|
sqsqrtd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( √ ‘ 𝑁 ) ↑ 2 ) = 𝑁 ) |
136 |
133 135
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ≤ ( ( √ ‘ 𝑁 ) ↑ 2 ) ) |
137 |
50
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑄 ‘ 𝑦 ) ∈ ℝ+ ) |
138 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( √ ‘ 𝑁 ) ∈ ℝ+ ) |
139 |
|
rprege0 |
⊢ ( ( 𝑄 ‘ 𝑦 ) ∈ ℝ+ → ( ( 𝑄 ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( 𝑄 ‘ 𝑦 ) ) ) |
140 |
|
rprege0 |
⊢ ( ( √ ‘ 𝑁 ) ∈ ℝ+ → ( ( √ ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝑁 ) ) ) |
141 |
|
le2sq |
⊢ ( ( ( ( 𝑄 ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( 𝑄 ‘ 𝑦 ) ) ∧ ( ( √ ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝑁 ) ) ) → ( ( 𝑄 ‘ 𝑦 ) ≤ ( √ ‘ 𝑁 ) ↔ ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ≤ ( ( √ ‘ 𝑁 ) ↑ 2 ) ) ) |
142 |
139 140 141
|
syl2an |
⊢ ( ( ( 𝑄 ‘ 𝑦 ) ∈ ℝ+ ∧ ( √ ‘ 𝑁 ) ∈ ℝ+ ) → ( ( 𝑄 ‘ 𝑦 ) ≤ ( √ ‘ 𝑁 ) ↔ ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ≤ ( ( √ ‘ 𝑁 ) ↑ 2 ) ) ) |
143 |
137 138 142
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ≤ ( √ ‘ 𝑁 ) ↔ ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ≤ ( ( √ ‘ 𝑁 ) ↑ 2 ) ) ) |
144 |
136 143
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑄 ‘ 𝑦 ) ≤ ( √ ‘ 𝑁 ) ) |
145 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( √ ‘ 𝑁 ) ∈ ℝ ) |
146 |
50
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑄 ‘ 𝑦 ) ∈ ℤ ) |
147 |
|
flge |
⊢ ( ( ( √ ‘ 𝑁 ) ∈ ℝ ∧ ( 𝑄 ‘ 𝑦 ) ∈ ℤ ) → ( ( 𝑄 ‘ 𝑦 ) ≤ ( √ ‘ 𝑁 ) ↔ ( 𝑄 ‘ 𝑦 ) ≤ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) |
148 |
145 146 147
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ≤ ( √ ‘ 𝑁 ) ↔ ( 𝑄 ‘ 𝑦 ) ≤ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) |
149 |
144 148
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑄 ‘ 𝑦 ) ≤ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) |
150 |
50 85
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑄 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 1 ) ) |
151 |
23
|
nn0zd |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℤ ) |
152 |
151
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℤ ) |
153 |
|
elfz5 |
⊢ ( ( ( 𝑄 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℤ ) → ( ( 𝑄 ‘ 𝑦 ) ∈ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ↔ ( 𝑄 ‘ 𝑦 ) ≤ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) |
154 |
150 152 153
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ∈ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ↔ ( 𝑄 ‘ 𝑦 ) ≤ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) |
155 |
149 154
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑄 ‘ 𝑦 ) ∈ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) |
156 |
128 155
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 〈 ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑦 ) 〉 ∈ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) |
157 |
156
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑀 → 〈 ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑦 ) 〉 ∈ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) ) |
158 |
|
ovex |
⊢ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ V |
159 |
|
fvex |
⊢ ( 𝑄 ‘ 𝑦 ) ∈ V |
160 |
158 159
|
opth |
⊢ ( 〈 ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑦 ) 〉 = 〈 ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑧 ) 〉 ↔ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) = ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) ∧ ( 𝑄 ‘ 𝑦 ) = ( 𝑄 ‘ 𝑧 ) ) ) |
161 |
|
oveq1 |
⊢ ( ( 𝑄 ‘ 𝑦 ) = ( 𝑄 ‘ 𝑧 ) → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) = ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) |
162 |
|
oveq12 |
⊢ ( ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) = ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) ∧ ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) = ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) → ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) = ( ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) ) |
163 |
161 162
|
sylan2 |
⊢ ( ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) = ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) ∧ ( 𝑄 ‘ 𝑦 ) = ( 𝑄 ‘ 𝑧 ) ) → ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) = ( ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) ) |
164 |
160 163
|
sylbi |
⊢ ( 〈 ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑦 ) 〉 = 〈 ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑧 ) 〉 → ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) = ( ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) ) |
165 |
77
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) = 𝑦 ) |
166 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
167 |
7 166
|
sstri |
⊢ 𝑀 ⊆ ℕ |
168 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → 𝑧 ∈ 𝑀 ) |
169 |
167 168
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → 𝑧 ∈ ℕ ) |
170 |
169
|
nncnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → 𝑧 ∈ ℂ ) |
171 |
5
|
prmreclem1 |
⊢ ( 𝑧 ∈ ℕ → ( ( 𝑄 ‘ 𝑧 ) ∈ ℕ ∧ ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ∥ 𝑧 ∧ ( 2 ∈ ( ℤ≥ ‘ 2 ) → ¬ ( 2 ↑ 2 ) ∥ ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) ) ) ) |
172 |
171
|
simp1d |
⊢ ( 𝑧 ∈ ℕ → ( 𝑄 ‘ 𝑧 ) ∈ ℕ ) |
173 |
169 172
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → ( 𝑄 ‘ 𝑧 ) ∈ ℕ ) |
174 |
173
|
nnsqcld |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ∈ ℕ ) |
175 |
174
|
nncnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ∈ ℂ ) |
176 |
174
|
nnne0d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ≠ 0 ) |
177 |
170 175 176
|
divcan1d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → ( ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) = 𝑧 ) |
178 |
165 177
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → ( ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) = ( ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) ↔ 𝑦 = 𝑧 ) ) |
179 |
164 178
|
syl5ib |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → ( 〈 ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑦 ) 〉 = 〈 ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑧 ) 〉 → 𝑦 = 𝑧 ) ) |
180 |
|
id |
⊢ ( 𝑦 = 𝑧 → 𝑦 = 𝑧 ) |
181 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑄 ‘ 𝑦 ) = ( 𝑄 ‘ 𝑧 ) ) |
182 |
181
|
oveq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) = ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) |
183 |
180 182
|
oveq12d |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) = ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) ) |
184 |
183 181
|
opeq12d |
⊢ ( 𝑦 = 𝑧 → 〈 ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑦 ) 〉 = 〈 ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑧 ) 〉 ) |
185 |
179 184
|
impbid1 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → ( 〈 ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑦 ) 〉 = 〈 ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑧 ) 〉 ↔ 𝑦 = 𝑧 ) ) |
186 |
185
|
ex |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) → ( 〈 ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑦 ) 〉 = 〈 ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑧 ) 〉 ↔ 𝑦 = 𝑧 ) ) ) |
187 |
157 186
|
dom2d |
⊢ ( 𝜑 → ( ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ∈ Fin → 𝑀 ≼ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) ) |
188 |
40 187
|
mpi |
⊢ ( 𝜑 → 𝑀 ≼ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) |
189 |
|
hashdom |
⊢ ( ( 𝑀 ∈ Fin ∧ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ∈ Fin ) → ( ( ♯ ‘ 𝑀 ) ≤ ( ♯ ‘ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) ↔ 𝑀 ≼ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) ) |
190 |
9 40 189
|
mp2an |
⊢ ( ( ♯ ‘ 𝑀 ) ≤ ( ♯ ‘ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) ↔ 𝑀 ≼ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) |
191 |
188 190
|
sylibr |
⊢ ( 𝜑 → ( ♯ ‘ 𝑀 ) ≤ ( ♯ ‘ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) ) |
192 |
|
hashxp |
⊢ ( ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ∈ Fin ∧ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ Fin ) → ( ♯ ‘ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) = ( ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) · ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) ) |
193 |
31 38 192
|
mp2an |
⊢ ( ♯ ‘ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) = ( ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) · ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) |
194 |
|
hashfz1 |
⊢ ( ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) = ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) |
195 |
23 194
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) = ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) |
196 |
195
|
oveq2d |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) · ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) = ( ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) |
197 |
193 196
|
eqtrid |
⊢ ( 𝜑 → ( ♯ ‘ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) = ( ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) |
198 |
191 197
|
breqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑀 ) ≤ ( ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) |
199 |
34
|
a1i |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) ∈ ℝ ) |
200 |
23
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) |
201 |
1 2 3 4 5
|
prmreclem2 |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) ≤ ( 2 ↑ 𝐾 ) ) |
202 |
199 26 35 200 201
|
lemul1ad |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ≤ ( ( 2 ↑ 𝐾 ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) |
203 |
13 37 25 198 202
|
letrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑀 ) ≤ ( ( 2 ↑ 𝐾 ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) |
204 |
17
|
nnrpd |
⊢ ( 𝜑 → ( 2 ↑ 𝐾 ) ∈ ℝ+ ) |
205 |
204
|
rprege0d |
⊢ ( 𝜑 → ( ( 2 ↑ 𝐾 ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ 𝐾 ) ) ) |
206 |
|
fllelt |
⊢ ( ( √ ‘ 𝑁 ) ∈ ℝ → ( ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ≤ ( √ ‘ 𝑁 ) ∧ ( √ ‘ 𝑁 ) < ( ( ⌊ ‘ ( √ ‘ 𝑁 ) ) + 1 ) ) ) |
207 |
27 206
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ≤ ( √ ‘ 𝑁 ) ∧ ( √ ‘ 𝑁 ) < ( ( ⌊ ‘ ( √ ‘ 𝑁 ) ) + 1 ) ) ) |
208 |
207
|
simpld |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ≤ ( √ ‘ 𝑁 ) ) |
209 |
|
lemul2a |
⊢ ( ( ( ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℝ ∧ ( √ ‘ 𝑁 ) ∈ ℝ ∧ ( ( 2 ↑ 𝐾 ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ 𝐾 ) ) ) ∧ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ≤ ( √ ‘ 𝑁 ) ) → ( ( 2 ↑ 𝐾 ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ≤ ( ( 2 ↑ 𝐾 ) · ( √ ‘ 𝑁 ) ) ) |
210 |
35 27 205 208 209
|
syl31anc |
⊢ ( 𝜑 → ( ( 2 ↑ 𝐾 ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ≤ ( ( 2 ↑ 𝐾 ) · ( √ ‘ 𝑁 ) ) ) |
211 |
13 25 28 203 210
|
letrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑀 ) ≤ ( ( 2 ↑ 𝐾 ) · ( √ ‘ 𝑁 ) ) ) |