Step |
Hyp |
Ref |
Expression |
1 |
|
prmrec.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 1 / 𝑛 ) , 0 ) ) |
2 |
|
prmrec.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
3 |
|
prmrec.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
prmrec.4 |
⊢ 𝑀 = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑛 } |
5 |
|
prmrec.5 |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
6 |
|
prmrec.6 |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) < ( 1 / 2 ) ) |
7 |
|
prmrec.7 |
⊢ 𝑊 = ( 𝑝 ∈ ℕ ↦ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛 ) } ) |
8 |
|
oveq2 |
⊢ ( 𝑥 = 𝐾 → ( ( 𝐾 + 1 ) ... 𝑥 ) = ( ( 𝐾 + 1 ) ... 𝐾 ) ) |
9 |
8
|
iuneq1d |
⊢ ( 𝑥 = 𝐾 → ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ( 𝑊 ‘ 𝑘 ) = ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝐾 ) ( 𝑊 ‘ 𝑘 ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝑥 = 𝐾 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ( 𝑊 ‘ 𝑘 ) ) = ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝐾 ) ( 𝑊 ‘ 𝑘 ) ) ) |
11 |
8
|
sumeq1d |
⊢ ( 𝑥 = 𝐾 → Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) = Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝐾 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑥 = 𝐾 → ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) = ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝐾 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) |
13 |
10 12
|
breq12d |
⊢ ( 𝑥 = 𝐾 → ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ↔ ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝐾 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝐾 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ) |
14 |
13
|
imbi2d |
⊢ ( 𝑥 = 𝐾 → ( ( 𝜑 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ↔ ( 𝜑 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝐾 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝐾 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ) ) |
15 |
|
oveq2 |
⊢ ( 𝑥 = 𝑗 → ( ( 𝐾 + 1 ) ... 𝑥 ) = ( ( 𝐾 + 1 ) ... 𝑗 ) ) |
16 |
15
|
iuneq1d |
⊢ ( 𝑥 = 𝑗 → ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ( 𝑊 ‘ 𝑘 ) = ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) |
17 |
16
|
fveq2d |
⊢ ( 𝑥 = 𝑗 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ( 𝑊 ‘ 𝑘 ) ) = ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) ) |
18 |
15
|
sumeq1d |
⊢ ( 𝑥 = 𝑗 → Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) = Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝑥 = 𝑗 → ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) = ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) |
20 |
17 19
|
breq12d |
⊢ ( 𝑥 = 𝑗 → ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ↔ ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ) |
21 |
20
|
imbi2d |
⊢ ( 𝑥 = 𝑗 → ( ( 𝜑 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ↔ ( 𝜑 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ) ) |
22 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( ( 𝐾 + 1 ) ... 𝑥 ) = ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ) |
23 |
22
|
iuneq1d |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ( 𝑊 ‘ 𝑘 ) = ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ) |
24 |
23
|
fveq2d |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ( 𝑊 ‘ 𝑘 ) ) = ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ) ) |
25 |
22
|
sumeq1d |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) = Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) |
26 |
25
|
oveq2d |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) = ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) |
27 |
24 26
|
breq12d |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ↔ ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ) |
28 |
27
|
imbi2d |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( ( 𝜑 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ↔ ( 𝜑 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ) ) |
29 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐾 + 1 ) ... 𝑥 ) = ( ( 𝐾 + 1 ) ... 𝑁 ) ) |
30 |
29
|
iuneq1d |
⊢ ( 𝑥 = 𝑁 → ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ( 𝑊 ‘ 𝑘 ) = ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) |
31 |
30
|
fveq2d |
⊢ ( 𝑥 = 𝑁 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ( 𝑊 ‘ 𝑘 ) ) = ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) |
32 |
29
|
sumeq1d |
⊢ ( 𝑥 = 𝑁 → Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) = Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) |
33 |
32
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) = ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) |
34 |
31 33
|
breq12d |
⊢ ( 𝑥 = 𝑁 → ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ↔ ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ) |
35 |
34
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ↔ ( 𝜑 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ) ) |
36 |
|
0le0 |
⊢ 0 ≤ 0 |
37 |
3
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
38 |
37
|
mul01d |
⊢ ( 𝜑 → ( 𝑁 · 0 ) = 0 ) |
39 |
36 38
|
breqtrrid |
⊢ ( 𝜑 → 0 ≤ ( 𝑁 · 0 ) ) |
40 |
2
|
nnred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
41 |
40
|
ltp1d |
⊢ ( 𝜑 → 𝐾 < ( 𝐾 + 1 ) ) |
42 |
2
|
nnzd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
43 |
42
|
peano2zd |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ℤ ) |
44 |
|
fzn |
⊢ ( ( ( 𝐾 + 1 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝐾 < ( 𝐾 + 1 ) ↔ ( ( 𝐾 + 1 ) ... 𝐾 ) = ∅ ) ) |
45 |
43 42 44
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 < ( 𝐾 + 1 ) ↔ ( ( 𝐾 + 1 ) ... 𝐾 ) = ∅ ) ) |
46 |
41 45
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐾 + 1 ) ... 𝐾 ) = ∅ ) |
47 |
46
|
iuneq1d |
⊢ ( 𝜑 → ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝐾 ) ( 𝑊 ‘ 𝑘 ) = ∪ 𝑘 ∈ ∅ ( 𝑊 ‘ 𝑘 ) ) |
48 |
|
0iun |
⊢ ∪ 𝑘 ∈ ∅ ( 𝑊 ‘ 𝑘 ) = ∅ |
49 |
47 48
|
eqtrdi |
⊢ ( 𝜑 → ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝐾 ) ( 𝑊 ‘ 𝑘 ) = ∅ ) |
50 |
49
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝐾 ) ( 𝑊 ‘ 𝑘 ) ) = ( ♯ ‘ ∅ ) ) |
51 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
52 |
50 51
|
eqtrdi |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝐾 ) ( 𝑊 ‘ 𝑘 ) ) = 0 ) |
53 |
46
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝐾 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) = Σ 𝑘 ∈ ∅ if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) |
54 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) = 0 |
55 |
53 54
|
eqtrdi |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝐾 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) = 0 ) |
56 |
55
|
oveq2d |
⊢ ( 𝜑 → ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝐾 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) = ( 𝑁 · 0 ) ) |
57 |
39 52 56
|
3brtr4d |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝐾 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝐾 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) |
58 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
59 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) |
60 |
2
|
peano2nnd |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ℕ ) |
61 |
|
eluznn |
⊢ ( ( ( 𝐾 + 1 ) ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
62 |
60 61
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
63 |
|
eleq1 |
⊢ ( 𝑝 = 𝑘 → ( 𝑝 ∈ ℙ ↔ 𝑘 ∈ ℙ ) ) |
64 |
|
breq1 |
⊢ ( 𝑝 = 𝑘 → ( 𝑝 ∥ 𝑛 ↔ 𝑘 ∥ 𝑛 ) ) |
65 |
63 64
|
anbi12d |
⊢ ( 𝑝 = 𝑘 → ( ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛 ) ↔ ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛 ) ) ) |
66 |
65
|
rabbidv |
⊢ ( 𝑝 = 𝑘 → { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛 ) } = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛 ) } ) |
67 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
68 |
67
|
rabex |
⊢ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛 ) } ∈ V |
69 |
66 7 68
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝑊 ‘ 𝑘 ) = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛 ) } ) |
70 |
69
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑊 ‘ 𝑘 ) = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛 ) } ) |
71 |
|
ssrab2 |
⊢ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛 ) } ⊆ ( 1 ... 𝑁 ) |
72 |
70 71
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) |
73 |
62 72
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) → ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) |
74 |
59 73
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ) → ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) |
75 |
74
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) |
76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ∀ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) |
77 |
|
iunss |
⊢ ( ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ↔ ∀ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) |
78 |
76 77
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) |
79 |
|
ssfi |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) → ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ∈ Fin ) |
80 |
58 78 79
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ∈ Fin ) |
81 |
|
hashcl |
⊢ ( ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ∈ Fin → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) ∈ ℕ0 ) |
82 |
80 81
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) ∈ ℕ0 ) |
83 |
82
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) ∈ ℝ ) |
84 |
3
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑁 ∈ ℝ ) |
86 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝐾 + 1 ) ... 𝑗 ) ∈ Fin ) |
87 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝐾 + 1 ) ∈ ℕ ) |
88 |
87 59 61
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ) → 𝑘 ∈ ℕ ) |
89 |
|
nnrecre |
⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) |
90 |
|
0re |
⊢ 0 ∈ ℝ |
91 |
|
ifcl |
⊢ ( ( ( 1 / 𝑘 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℝ ) |
92 |
89 90 91
|
sylancl |
⊢ ( 𝑘 ∈ ℕ → if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℝ ) |
93 |
88 92
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ) → if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℝ ) |
94 |
86 93
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℝ ) |
95 |
85 94
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ∈ ℝ ) |
96 |
|
prmnn |
⊢ ( ( 𝑗 + 1 ) ∈ ℙ → ( 𝑗 + 1 ) ∈ ℕ ) |
97 |
96
|
nnrecred |
⊢ ( ( 𝑗 + 1 ) ∈ ℙ → ( 1 / ( 𝑗 + 1 ) ) ∈ ℝ ) |
98 |
97
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝑗 + 1 ) ∈ ℙ ) → ( 1 / ( 𝑗 + 1 ) ) ∈ ℝ ) |
99 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ¬ ( 𝑗 + 1 ) ∈ ℙ ) → 0 ∈ ℝ ) |
100 |
98 99
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ∈ ℝ ) |
101 |
85 100
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ∈ ℝ ) |
102 |
83 95 101
|
leadd1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ↔ ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) + ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) ≤ ( ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) + ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) ) ) |
103 |
|
eluzp1p1 |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) |
104 |
103
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) |
105 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝜑 ) |
106 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) |
107 |
92
|
recnd |
⊢ ( 𝑘 ∈ ℕ → if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℂ ) |
108 |
62 107
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) → if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℂ ) |
109 |
105 106 108
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ) → if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℂ ) |
110 |
|
eleq1 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑘 ∈ ℙ ↔ ( 𝑗 + 1 ) ∈ ℙ ) ) |
111 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 1 / 𝑘 ) = ( 1 / ( 𝑗 + 1 ) ) ) |
112 |
110 111
|
ifbieq1d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) = if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) |
113 |
104 109 112
|
fsumm1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) = ( Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( ( 𝑗 + 1 ) − 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) + if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) |
114 |
|
eluzelz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝑗 ∈ ℤ ) |
115 |
114
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑗 ∈ ℤ ) |
116 |
115
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑗 ∈ ℂ ) |
117 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
118 |
|
pncan |
⊢ ( ( 𝑗 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑗 + 1 ) − 1 ) = 𝑗 ) |
119 |
116 117 118
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑗 + 1 ) − 1 ) = 𝑗 ) |
120 |
119
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝐾 + 1 ) ... ( ( 𝑗 + 1 ) − 1 ) ) = ( ( 𝐾 + 1 ) ... 𝑗 ) ) |
121 |
120
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( ( 𝑗 + 1 ) − 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) = Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) |
122 |
121
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( ( 𝑗 + 1 ) − 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) + if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) = ( Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) + if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) |
123 |
113 122
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) = ( Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) + if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) |
124 |
123
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) = ( 𝑁 · ( Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) + if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) ) |
125 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑁 ∈ ℂ ) |
126 |
94
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℂ ) |
127 |
100
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ∈ ℂ ) |
128 |
125 126 127
|
adddid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑁 · ( Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) + if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) = ( ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) + ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) ) |
129 |
124 128
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) = ( ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) + ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) ) |
130 |
129
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) + ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ↔ ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) + ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) ≤ ( ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) + ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) ) ) |
131 |
102 130
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ↔ ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) + ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ) |
132 |
106 73
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ) → ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) |
133 |
132
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) |
134 |
133
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ∀ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) |
135 |
|
iunss |
⊢ ( ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ↔ ∀ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) |
136 |
134 135
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) |
137 |
|
ssfi |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) → ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ∈ Fin ) |
138 |
58 136 137
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ∈ Fin ) |
139 |
|
hashcl |
⊢ ( ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ∈ Fin → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ) ∈ ℕ0 ) |
140 |
138 139
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ) ∈ ℕ0 ) |
141 |
140
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ) ∈ ℝ ) |
142 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑊 ‘ 𝑘 ) = ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) |
143 |
142
|
sseq1d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ↔ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ⊆ ( 1 ... 𝑁 ) ) ) |
144 |
72
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) |
145 |
144
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ∀ 𝑘 ∈ ℕ ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) |
146 |
|
eluznn |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑗 ∈ ℕ ) |
147 |
2 146
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑗 ∈ ℕ ) |
148 |
147
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑗 + 1 ) ∈ ℕ ) |
149 |
143 145 148
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑊 ‘ ( 𝑗 + 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
150 |
|
ssfi |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ⊆ ( 1 ... 𝑁 ) ) → ( 𝑊 ‘ ( 𝑗 + 1 ) ) ∈ Fin ) |
151 |
58 149 150
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑊 ‘ ( 𝑗 + 1 ) ) ∈ Fin ) |
152 |
|
hashcl |
⊢ ( ( 𝑊 ‘ ( 𝑗 + 1 ) ) ∈ Fin → ( ♯ ‘ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) ∈ ℕ0 ) |
153 |
151 152
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ♯ ‘ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) ∈ ℕ0 ) |
154 |
153
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ♯ ‘ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
155 |
83 154
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) + ( ♯ ‘ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) ) ∈ ℝ ) |
156 |
83 101
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) + ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) ∈ ℝ ) |
157 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
158 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
159 |
2
|
nncnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
160 |
159
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐾 ∈ ℂ ) |
161 |
|
pncan |
⊢ ( ( 𝐾 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐾 + 1 ) − 1 ) = 𝐾 ) |
162 |
160 117 161
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝐾 + 1 ) − 1 ) = 𝐾 ) |
163 |
162
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ℤ≥ ‘ ( ( 𝐾 + 1 ) − 1 ) ) = ( ℤ≥ ‘ 𝐾 ) ) |
164 |
158 163
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑗 ∈ ( ℤ≥ ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) |
165 |
|
fzsuc2 |
⊢ ( ( ( 𝐾 + 1 ) ∈ ℤ ∧ 𝑗 ∈ ( ℤ≥ ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) → ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) = ( ( ( 𝐾 + 1 ) ... 𝑗 ) ∪ { ( 𝑗 + 1 ) } ) ) |
166 |
157 164 165
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) = ( ( ( 𝐾 + 1 ) ... 𝑗 ) ∪ { ( 𝑗 + 1 ) } ) ) |
167 |
166
|
iuneq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) = ∪ 𝑘 ∈ ( ( ( 𝐾 + 1 ) ... 𝑗 ) ∪ { ( 𝑗 + 1 ) } ) ( 𝑊 ‘ 𝑘 ) ) |
168 |
|
iunxun |
⊢ ∪ 𝑘 ∈ ( ( ( 𝐾 + 1 ) ... 𝑗 ) ∪ { ( 𝑗 + 1 ) } ) ( 𝑊 ‘ 𝑘 ) = ( ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ∪ ∪ 𝑘 ∈ { ( 𝑗 + 1 ) } ( 𝑊 ‘ 𝑘 ) ) |
169 |
|
ovex |
⊢ ( 𝑗 + 1 ) ∈ V |
170 |
169 142
|
iunxsn |
⊢ ∪ 𝑘 ∈ { ( 𝑗 + 1 ) } ( 𝑊 ‘ 𝑘 ) = ( 𝑊 ‘ ( 𝑗 + 1 ) ) |
171 |
170
|
uneq2i |
⊢ ( ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ∪ ∪ 𝑘 ∈ { ( 𝑗 + 1 ) } ( 𝑊 ‘ 𝑘 ) ) = ( ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ∪ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) |
172 |
168 171
|
eqtri |
⊢ ∪ 𝑘 ∈ ( ( ( 𝐾 + 1 ) ... 𝑗 ) ∪ { ( 𝑗 + 1 ) } ) ( 𝑊 ‘ 𝑘 ) = ( ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ∪ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) |
173 |
167 172
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) = ( ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ∪ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) ) |
174 |
173
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ) = ( ♯ ‘ ( ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ∪ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) ) ) |
175 |
|
hashun2 |
⊢ ( ( ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ∈ Fin ∧ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ∈ Fin ) → ( ♯ ‘ ( ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ∪ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) ) ≤ ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) + ( ♯ ‘ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) ) ) |
176 |
80 151 175
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ♯ ‘ ( ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ∪ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) ) ≤ ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) + ( ♯ ‘ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) ) ) |
177 |
174 176
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) + ( ♯ ‘ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) ) ) |
178 |
85 148
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑁 / ( 𝑗 + 1 ) ) ∈ ℝ ) |
179 |
|
flle |
⊢ ( ( 𝑁 / ( 𝑗 + 1 ) ) ∈ ℝ → ( ⌊ ‘ ( 𝑁 / ( 𝑗 + 1 ) ) ) ≤ ( 𝑁 / ( 𝑗 + 1 ) ) ) |
180 |
178 179
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ⌊ ‘ ( 𝑁 / ( 𝑗 + 1 ) ) ) ≤ ( 𝑁 / ( 𝑗 + 1 ) ) ) |
181 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℕ ) |
182 |
181
|
nncnd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℂ ) |
183 |
182
|
subid1d |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑛 − 0 ) = 𝑛 ) |
184 |
183
|
breq2d |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑗 + 1 ) ∥ ( 𝑛 − 0 ) ↔ ( 𝑗 + 1 ) ∥ 𝑛 ) ) |
185 |
184
|
rabbiia |
⊢ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑗 + 1 ) ∥ ( 𝑛 − 0 ) } = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑗 + 1 ) ∥ 𝑛 } |
186 |
185
|
fveq2i |
⊢ ( ♯ ‘ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑗 + 1 ) ∥ ( 𝑛 − 0 ) } ) = ( ♯ ‘ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑗 + 1 ) ∥ 𝑛 } ) |
187 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 1 ∈ ℤ ) |
188 |
3
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
189 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
190 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
191 |
190
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 1 − 1 ) ) = ( ℤ≥ ‘ 0 ) |
192 |
189 191
|
eqtr4i |
⊢ ℕ0 = ( ℤ≥ ‘ ( 1 − 1 ) ) |
193 |
188 192
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 1 − 1 ) ) ) |
194 |
193
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 1 − 1 ) ) ) |
195 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 0 ∈ ℤ ) |
196 |
148 187 194 195
|
hashdvds |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ♯ ‘ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑗 + 1 ) ∥ ( 𝑛 − 0 ) } ) = ( ( ⌊ ‘ ( ( 𝑁 − 0 ) / ( 𝑗 + 1 ) ) ) − ( ⌊ ‘ ( ( ( 1 − 1 ) − 0 ) / ( 𝑗 + 1 ) ) ) ) ) |
197 |
125
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑁 − 0 ) = 𝑁 ) |
198 |
197
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ⌊ ‘ ( ( 𝑁 − 0 ) / ( 𝑗 + 1 ) ) ) = ( ⌊ ‘ ( 𝑁 / ( 𝑗 + 1 ) ) ) ) |
199 |
190
|
oveq1i |
⊢ ( ( 1 − 1 ) − 0 ) = ( 0 − 0 ) |
200 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
201 |
199 200
|
eqtri |
⊢ ( ( 1 − 1 ) − 0 ) = 0 |
202 |
201
|
oveq1i |
⊢ ( ( ( 1 − 1 ) − 0 ) / ( 𝑗 + 1 ) ) = ( 0 / ( 𝑗 + 1 ) ) |
203 |
148
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑗 + 1 ) ∈ ℂ ) |
204 |
148
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑗 + 1 ) ≠ 0 ) |
205 |
203 204
|
div0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 0 / ( 𝑗 + 1 ) ) = 0 ) |
206 |
202 205
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( ( 1 − 1 ) − 0 ) / ( 𝑗 + 1 ) ) = 0 ) |
207 |
206
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ⌊ ‘ ( ( ( 1 − 1 ) − 0 ) / ( 𝑗 + 1 ) ) ) = ( ⌊ ‘ 0 ) ) |
208 |
|
0z |
⊢ 0 ∈ ℤ |
209 |
|
flid |
⊢ ( 0 ∈ ℤ → ( ⌊ ‘ 0 ) = 0 ) |
210 |
208 209
|
ax-mp |
⊢ ( ⌊ ‘ 0 ) = 0 |
211 |
207 210
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ⌊ ‘ ( ( ( 1 − 1 ) − 0 ) / ( 𝑗 + 1 ) ) ) = 0 ) |
212 |
198 211
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( ⌊ ‘ ( ( 𝑁 − 0 ) / ( 𝑗 + 1 ) ) ) − ( ⌊ ‘ ( ( ( 1 − 1 ) − 0 ) / ( 𝑗 + 1 ) ) ) ) = ( ( ⌊ ‘ ( 𝑁 / ( 𝑗 + 1 ) ) ) − 0 ) ) |
213 |
178
|
flcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ⌊ ‘ ( 𝑁 / ( 𝑗 + 1 ) ) ) ∈ ℤ ) |
214 |
213
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ⌊ ‘ ( 𝑁 / ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
215 |
214
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( ⌊ ‘ ( 𝑁 / ( 𝑗 + 1 ) ) ) − 0 ) = ( ⌊ ‘ ( 𝑁 / ( 𝑗 + 1 ) ) ) ) |
216 |
196 212 215
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ♯ ‘ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑗 + 1 ) ∥ ( 𝑛 − 0 ) } ) = ( ⌊ ‘ ( 𝑁 / ( 𝑗 + 1 ) ) ) ) |
217 |
186 216
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ♯ ‘ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑗 + 1 ) ∥ 𝑛 } ) = ( ⌊ ‘ ( 𝑁 / ( 𝑗 + 1 ) ) ) ) |
218 |
125 203 204
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑁 / ( 𝑗 + 1 ) ) = ( 𝑁 · ( 1 / ( 𝑗 + 1 ) ) ) ) |
219 |
218
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑁 · ( 1 / ( 𝑗 + 1 ) ) ) = ( 𝑁 / ( 𝑗 + 1 ) ) ) |
220 |
180 217 219
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ♯ ‘ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑗 + 1 ) ∥ 𝑛 } ) ≤ ( 𝑁 · ( 1 / ( 𝑗 + 1 ) ) ) ) |
221 |
220
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝑗 + 1 ) ∈ ℙ ) → ( ♯ ‘ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑗 + 1 ) ∥ 𝑛 } ) ≤ ( 𝑁 · ( 1 / ( 𝑗 + 1 ) ) ) ) |
222 |
|
eleq1 |
⊢ ( 𝑝 = ( 𝑗 + 1 ) → ( 𝑝 ∈ ℙ ↔ ( 𝑗 + 1 ) ∈ ℙ ) ) |
223 |
|
breq1 |
⊢ ( 𝑝 = ( 𝑗 + 1 ) → ( 𝑝 ∥ 𝑛 ↔ ( 𝑗 + 1 ) ∥ 𝑛 ) ) |
224 |
222 223
|
anbi12d |
⊢ ( 𝑝 = ( 𝑗 + 1 ) → ( ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛 ) ↔ ( ( 𝑗 + 1 ) ∈ ℙ ∧ ( 𝑗 + 1 ) ∥ 𝑛 ) ) ) |
225 |
224
|
rabbidv |
⊢ ( 𝑝 = ( 𝑗 + 1 ) → { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛 ) } = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( ( 𝑗 + 1 ) ∈ ℙ ∧ ( 𝑗 + 1 ) ∥ 𝑛 ) } ) |
226 |
67
|
rabex |
⊢ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( ( 𝑗 + 1 ) ∈ ℙ ∧ ( 𝑗 + 1 ) ∥ 𝑛 ) } ∈ V |
227 |
225 7 226
|
fvmpt |
⊢ ( ( 𝑗 + 1 ) ∈ ℕ → ( 𝑊 ‘ ( 𝑗 + 1 ) ) = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( ( 𝑗 + 1 ) ∈ ℙ ∧ ( 𝑗 + 1 ) ∥ 𝑛 ) } ) |
228 |
148 227
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑊 ‘ ( 𝑗 + 1 ) ) = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( ( 𝑗 + 1 ) ∈ ℙ ∧ ( 𝑗 + 1 ) ∥ 𝑛 ) } ) |
229 |
228
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝑗 + 1 ) ∈ ℙ ) → ( 𝑊 ‘ ( 𝑗 + 1 ) ) = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( ( 𝑗 + 1 ) ∈ ℙ ∧ ( 𝑗 + 1 ) ∥ 𝑛 ) } ) |
230 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝑗 + 1 ) ∈ ℙ ) → ( 𝑗 + 1 ) ∈ ℙ ) |
231 |
230
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝑗 + 1 ) ∈ ℙ ) → ( ( 𝑗 + 1 ) ∥ 𝑛 ↔ ( ( 𝑗 + 1 ) ∈ ℙ ∧ ( 𝑗 + 1 ) ∥ 𝑛 ) ) ) |
232 |
231
|
rabbidv |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝑗 + 1 ) ∈ ℙ ) → { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑗 + 1 ) ∥ 𝑛 } = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( ( 𝑗 + 1 ) ∈ ℙ ∧ ( 𝑗 + 1 ) ∥ 𝑛 ) } ) |
233 |
229 232
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝑗 + 1 ) ∈ ℙ ) → ( 𝑊 ‘ ( 𝑗 + 1 ) ) = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑗 + 1 ) ∥ 𝑛 } ) |
234 |
233
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝑗 + 1 ) ∈ ℙ ) → ( ♯ ‘ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) = ( ♯ ‘ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑗 + 1 ) ∥ 𝑛 } ) ) |
235 |
|
iftrue |
⊢ ( ( 𝑗 + 1 ) ∈ ℙ → if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) = ( 1 / ( 𝑗 + 1 ) ) ) |
236 |
235
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝑗 + 1 ) ∈ ℙ ) → if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) = ( 1 / ( 𝑗 + 1 ) ) ) |
237 |
236
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝑗 + 1 ) ∈ ℙ ) → ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) = ( 𝑁 · ( 1 / ( 𝑗 + 1 ) ) ) ) |
238 |
221 234 237
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝑗 + 1 ) ∈ ℙ ) → ( ♯ ‘ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) ≤ ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) |
239 |
36
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ¬ ( 𝑗 + 1 ) ∈ ℙ ) → 0 ≤ 0 ) |
240 |
|
simpl |
⊢ ( ( ( 𝑗 + 1 ) ∈ ℙ ∧ ( 𝑗 + 1 ) ∥ 𝑛 ) → ( 𝑗 + 1 ) ∈ ℙ ) |
241 |
240
|
con3i |
⊢ ( ¬ ( 𝑗 + 1 ) ∈ ℙ → ¬ ( ( 𝑗 + 1 ) ∈ ℙ ∧ ( 𝑗 + 1 ) ∥ 𝑛 ) ) |
242 |
241
|
ralrimivw |
⊢ ( ¬ ( 𝑗 + 1 ) ∈ ℙ → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ¬ ( ( 𝑗 + 1 ) ∈ ℙ ∧ ( 𝑗 + 1 ) ∥ 𝑛 ) ) |
243 |
|
rabeq0 |
⊢ ( { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( ( 𝑗 + 1 ) ∈ ℙ ∧ ( 𝑗 + 1 ) ∥ 𝑛 ) } = ∅ ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ¬ ( ( 𝑗 + 1 ) ∈ ℙ ∧ ( 𝑗 + 1 ) ∥ 𝑛 ) ) |
244 |
242 243
|
sylibr |
⊢ ( ¬ ( 𝑗 + 1 ) ∈ ℙ → { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( ( 𝑗 + 1 ) ∈ ℙ ∧ ( 𝑗 + 1 ) ∥ 𝑛 ) } = ∅ ) |
245 |
228 244
|
sylan9eq |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ¬ ( 𝑗 + 1 ) ∈ ℙ ) → ( 𝑊 ‘ ( 𝑗 + 1 ) ) = ∅ ) |
246 |
245
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ¬ ( 𝑗 + 1 ) ∈ ℙ ) → ( ♯ ‘ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) = ( ♯ ‘ ∅ ) ) |
247 |
246 51
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ¬ ( 𝑗 + 1 ) ∈ ℙ ) → ( ♯ ‘ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) = 0 ) |
248 |
|
iffalse |
⊢ ( ¬ ( 𝑗 + 1 ) ∈ ℙ → if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) = 0 ) |
249 |
248
|
oveq2d |
⊢ ( ¬ ( 𝑗 + 1 ) ∈ ℙ → ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) = ( 𝑁 · 0 ) ) |
250 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑁 · 0 ) = 0 ) |
251 |
249 250
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ¬ ( 𝑗 + 1 ) ∈ ℙ ) → ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) = 0 ) |
252 |
239 247 251
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ¬ ( 𝑗 + 1 ) ∈ ℙ ) → ( ♯ ‘ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) ≤ ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) |
253 |
238 252
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ♯ ‘ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) ≤ ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) |
254 |
154 101 83 253
|
leadd2dd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) + ( ♯ ‘ ( 𝑊 ‘ ( 𝑗 + 1 ) ) ) ) ≤ ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) + ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) ) |
255 |
141 155 156 177 254
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) + ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) ) |
256 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ∈ Fin ) |
257 |
62 92
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) → if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℝ ) |
258 |
105 106 257
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ) → if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℝ ) |
259 |
256 258
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℝ ) |
260 |
85 259
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ∈ ℝ ) |
261 |
|
letr |
⊢ ( ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ) ∈ ℝ ∧ ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) + ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) ∈ ℝ ∧ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ∈ ℝ ) → ( ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) + ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) ∧ ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) + ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ) |
262 |
141 156 260 261
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) + ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) ∧ ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) + ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ) |
263 |
255 262
|
mpand |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) + ( 𝑁 · if ( ( 𝑗 + 1 ) ∈ ℙ , ( 1 / ( 𝑗 + 1 ) ) , 0 ) ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ) |
264 |
131 263
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ) |
265 |
264
|
expcom |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝜑 → ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ) ) |
266 |
265
|
a2d |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) → ( ( 𝜑 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑗 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) → ( 𝜑 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... ( 𝑗 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ) ) |
267 |
14 21 28 35 57 266
|
uzind4i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝜑 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ) |
268 |
267
|
com12 |
⊢ ( 𝜑 → ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ) |