Step |
Hyp |
Ref |
Expression |
1 |
|
prmrec.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 1 / 𝑛 ) , 0 ) ) |
2 |
|
prmrec.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
3 |
|
prmrec.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
prmrec.4 |
⊢ 𝑀 = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑛 } |
5 |
|
prmrec.5 |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
6 |
|
prmrec.6 |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) < ( 1 / 2 ) ) |
7 |
|
prmrec.7 |
⊢ 𝑊 = ( 𝑝 ∈ ℕ ↦ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛 ) } ) |
8 |
3
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
9 |
8
|
rehalfcld |
⊢ ( 𝜑 → ( 𝑁 / 2 ) ∈ ℝ ) |
10 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
11 |
4
|
ssrab3 |
⊢ 𝑀 ⊆ ( 1 ... 𝑁 ) |
12 |
|
ssfi |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ 𝑀 ⊆ ( 1 ... 𝑁 ) ) → 𝑀 ∈ Fin ) |
13 |
10 11 12
|
mp2an |
⊢ 𝑀 ∈ Fin |
14 |
|
hashcl |
⊢ ( 𝑀 ∈ Fin → ( ♯ ‘ 𝑀 ) ∈ ℕ0 ) |
15 |
13 14
|
ax-mp |
⊢ ( ♯ ‘ 𝑀 ) ∈ ℕ0 |
16 |
15
|
nn0rei |
⊢ ( ♯ ‘ 𝑀 ) ∈ ℝ |
17 |
16
|
a1i |
⊢ ( 𝜑 → ( ♯ ‘ 𝑀 ) ∈ ℝ ) |
18 |
|
2nn |
⊢ 2 ∈ ℕ |
19 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
20 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ) → ( 2 ↑ 𝐾 ) ∈ ℕ ) |
21 |
18 19 20
|
sylancr |
⊢ ( 𝜑 → ( 2 ↑ 𝐾 ) ∈ ℕ ) |
22 |
21
|
nnred |
⊢ ( 𝜑 → ( 2 ↑ 𝐾 ) ∈ ℝ ) |
23 |
3
|
nnrpd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ+ ) |
24 |
23
|
rpsqrtcld |
⊢ ( 𝜑 → ( √ ‘ 𝑁 ) ∈ ℝ+ ) |
25 |
24
|
rpred |
⊢ ( 𝜑 → ( √ ‘ 𝑁 ) ∈ ℝ ) |
26 |
22 25
|
remulcld |
⊢ ( 𝜑 → ( ( 2 ↑ 𝐾 ) · ( √ ‘ 𝑁 ) ) ∈ ℝ ) |
27 |
8
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
28 |
27
|
2halvesd |
⊢ ( 𝜑 → ( ( 𝑁 / 2 ) + ( 𝑁 / 2 ) ) = 𝑁 ) |
29 |
11
|
a1i |
⊢ ( 𝜑 → 𝑀 ⊆ ( 1 ... 𝑁 ) ) |
30 |
2
|
peano2nnd |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ℕ ) |
31 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) |
32 |
|
eluznn |
⊢ ( ( ( 𝐾 + 1 ) ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
33 |
30 31 32
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → 𝑘 ∈ ℕ ) |
34 |
|
eleq1w |
⊢ ( 𝑝 = 𝑘 → ( 𝑝 ∈ ℙ ↔ 𝑘 ∈ ℙ ) ) |
35 |
|
breq1 |
⊢ ( 𝑝 = 𝑘 → ( 𝑝 ∥ 𝑛 ↔ 𝑘 ∥ 𝑛 ) ) |
36 |
34 35
|
anbi12d |
⊢ ( 𝑝 = 𝑘 → ( ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛 ) ↔ ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛 ) ) ) |
37 |
36
|
rabbidv |
⊢ ( 𝑝 = 𝑘 → { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛 ) } = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛 ) } ) |
38 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
39 |
38
|
rabex |
⊢ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛 ) } ∈ V |
40 |
37 7 39
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝑊 ‘ 𝑘 ) = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛 ) } ) |
41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑊 ‘ 𝑘 ) = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛 ) } ) |
42 |
|
ssrab2 |
⊢ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛 ) } ⊆ ( 1 ... 𝑁 ) |
43 |
41 42
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) |
44 |
33 43
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) |
45 |
44
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) |
46 |
|
iunss |
⊢ ( ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ↔ ∀ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) |
47 |
45 46
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) |
48 |
29 47
|
unssd |
⊢ ( 𝜑 → ( 𝑀 ∪ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ⊆ ( 1 ... 𝑁 ) ) |
49 |
|
breq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 ∥ 𝑛 ↔ 𝑞 ∥ 𝑛 ) ) |
50 |
49
|
notbid |
⊢ ( 𝑝 = 𝑞 → ( ¬ 𝑝 ∥ 𝑛 ↔ ¬ 𝑞 ∥ 𝑛 ) ) |
51 |
50
|
cbvralvw |
⊢ ( ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑛 ↔ ∀ 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑞 ∥ 𝑛 ) |
52 |
|
breq2 |
⊢ ( 𝑛 = 𝑥 → ( 𝑞 ∥ 𝑛 ↔ 𝑞 ∥ 𝑥 ) ) |
53 |
52
|
notbid |
⊢ ( 𝑛 = 𝑥 → ( ¬ 𝑞 ∥ 𝑛 ↔ ¬ 𝑞 ∥ 𝑥 ) ) |
54 |
53
|
ralbidv |
⊢ ( 𝑛 = 𝑥 → ( ∀ 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑞 ∥ 𝑛 ↔ ∀ 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑞 ∥ 𝑥 ) ) |
55 |
51 54
|
syl5bb |
⊢ ( 𝑛 = 𝑥 → ( ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑛 ↔ ∀ 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑞 ∥ 𝑥 ) ) |
56 |
55 4
|
elrab2 |
⊢ ( 𝑥 ∈ 𝑀 ↔ ( 𝑥 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑞 ∥ 𝑥 ) ) |
57 |
|
elun1 |
⊢ ( 𝑥 ∈ 𝑀 → 𝑥 ∈ ( 𝑀 ∪ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) |
58 |
56 57
|
sylbir |
⊢ ( ( 𝑥 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑞 ∥ 𝑥 ) → 𝑥 ∈ ( 𝑀 ∪ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) |
59 |
58
|
ex |
⊢ ( 𝑥 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑞 ∥ 𝑥 → 𝑥 ∈ ( 𝑀 ∪ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) ) |
60 |
59
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ∀ 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑞 ∥ 𝑥 → 𝑥 ∈ ( 𝑀 ∪ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) ) |
61 |
|
dfrex2 |
⊢ ( ∃ 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) 𝑞 ∥ 𝑥 ↔ ¬ ∀ 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑞 ∥ 𝑥 ) |
62 |
2
|
nnzd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
63 |
62
|
peano2zd |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ℤ ) |
64 |
63
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
65 |
3
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
66 |
65
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝑁 ∈ ℤ ) |
67 |
|
eldifi |
⊢ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) → 𝑞 ∈ ℙ ) |
68 |
67
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝑞 ∈ ℙ ) |
69 |
|
prmz |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℤ ) |
70 |
68 69
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝑞 ∈ ℤ ) |
71 |
|
eldifn |
⊢ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) → ¬ 𝑞 ∈ ( 1 ... 𝐾 ) ) |
72 |
71
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → ¬ 𝑞 ∈ ( 1 ... 𝐾 ) ) |
73 |
|
prmnn |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℕ ) |
74 |
68 73
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝑞 ∈ ℕ ) |
75 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
76 |
74 75
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝑞 ∈ ( ℤ≥ ‘ 1 ) ) |
77 |
62
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝐾 ∈ ℤ ) |
78 |
|
elfz5 |
⊢ ( ( 𝑞 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝐾 ∈ ℤ ) → ( 𝑞 ∈ ( 1 ... 𝐾 ) ↔ 𝑞 ≤ 𝐾 ) ) |
79 |
76 77 78
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → ( 𝑞 ∈ ( 1 ... 𝐾 ) ↔ 𝑞 ≤ 𝐾 ) ) |
80 |
72 79
|
mtbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → ¬ 𝑞 ≤ 𝐾 ) |
81 |
2
|
nnred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
82 |
81
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝐾 ∈ ℝ ) |
83 |
74
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝑞 ∈ ℝ ) |
84 |
82 83
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → ( 𝐾 < 𝑞 ↔ ¬ 𝑞 ≤ 𝐾 ) ) |
85 |
80 84
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝐾 < 𝑞 ) |
86 |
|
zltp1le |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑞 ∈ ℤ ) → ( 𝐾 < 𝑞 ↔ ( 𝐾 + 1 ) ≤ 𝑞 ) ) |
87 |
77 70 86
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → ( 𝐾 < 𝑞 ↔ ( 𝐾 + 1 ) ≤ 𝑞 ) ) |
88 |
85 87
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → ( 𝐾 + 1 ) ≤ 𝑞 ) |
89 |
|
elfznn |
⊢ ( 𝑥 ∈ ( 1 ... 𝑁 ) → 𝑥 ∈ ℕ ) |
90 |
89
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝑥 ∈ ℕ ) |
91 |
90
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
92 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝑁 ∈ ℝ ) |
93 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝑞 ∥ 𝑥 ) |
94 |
|
dvdsle |
⊢ ( ( 𝑞 ∈ ℤ ∧ 𝑥 ∈ ℕ ) → ( 𝑞 ∥ 𝑥 → 𝑞 ≤ 𝑥 ) ) |
95 |
70 90 94
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → ( 𝑞 ∥ 𝑥 → 𝑞 ≤ 𝑥 ) ) |
96 |
93 95
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝑞 ≤ 𝑥 ) |
97 |
|
elfzle2 |
⊢ ( 𝑥 ∈ ( 1 ... 𝑁 ) → 𝑥 ≤ 𝑁 ) |
98 |
97
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝑥 ≤ 𝑁 ) |
99 |
83 91 92 96 98
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝑞 ≤ 𝑁 ) |
100 |
64 66 70 88 99
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝑞 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) |
101 |
52
|
anbi2d |
⊢ ( 𝑛 = 𝑥 → ( ( 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛 ) ↔ ( 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ) ) |
102 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝑥 ∈ ( 1 ... 𝑁 ) ) |
103 |
68 93
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → ( 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ) |
104 |
101 102 103
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝑥 ∈ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛 ) } ) |
105 |
|
eleq1w |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 ∈ ℙ ↔ 𝑞 ∈ ℙ ) ) |
106 |
105 49
|
anbi12d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛 ) ↔ ( 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛 ) ) ) |
107 |
106
|
rabbidv |
⊢ ( 𝑝 = 𝑞 → { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛 ) } = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛 ) } ) |
108 |
38
|
rabex |
⊢ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛 ) } ∈ V |
109 |
107 7 108
|
fvmpt |
⊢ ( 𝑞 ∈ ℕ → ( 𝑊 ‘ 𝑞 ) = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛 ) } ) |
110 |
74 109
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → ( 𝑊 ‘ 𝑞 ) = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛 ) } ) |
111 |
104 110
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝑥 ∈ ( 𝑊 ‘ 𝑞 ) ) |
112 |
|
fveq2 |
⊢ ( 𝑘 = 𝑞 → ( 𝑊 ‘ 𝑘 ) = ( 𝑊 ‘ 𝑞 ) ) |
113 |
112
|
eliuni |
⊢ ( ( 𝑞 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ∧ 𝑥 ∈ ( 𝑊 ‘ 𝑞 ) ) → 𝑥 ∈ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) |
114 |
100 111 113
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝑥 ∈ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) |
115 |
|
elun2 |
⊢ ( 𝑥 ∈ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) → 𝑥 ∈ ( 𝑀 ∪ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) |
116 |
114 115
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ∧ 𝑞 ∥ 𝑥 ) ) → 𝑥 ∈ ( 𝑀 ∪ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) |
117 |
116
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ∃ 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) 𝑞 ∥ 𝑥 → 𝑥 ∈ ( 𝑀 ∪ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) ) |
118 |
61 117
|
syl5bir |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ¬ ∀ 𝑞 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑞 ∥ 𝑥 → 𝑥 ∈ ( 𝑀 ∪ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) ) |
119 |
60 118
|
pm2.61d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → 𝑥 ∈ ( 𝑀 ∪ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) |
120 |
48 119
|
eqelssd |
⊢ ( 𝜑 → ( 𝑀 ∪ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) = ( 1 ... 𝑁 ) ) |
121 |
120
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑀 ∪ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) = ( ♯ ‘ ( 1 ... 𝑁 ) ) ) |
122 |
3
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
123 |
|
hashfz1 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |
124 |
122 123
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |
125 |
121 124
|
eqtr2d |
⊢ ( 𝜑 → 𝑁 = ( ♯ ‘ ( 𝑀 ∪ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) ) |
126 |
13
|
a1i |
⊢ ( 𝜑 → 𝑀 ∈ Fin ) |
127 |
|
ssfi |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ⊆ ( 1 ... 𝑁 ) ) → ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ∈ Fin ) |
128 |
10 47 127
|
sylancr |
⊢ ( 𝜑 → ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ∈ Fin ) |
129 |
|
breq1 |
⊢ ( 𝑝 = 𝑘 → ( 𝑝 ∥ 𝑥 ↔ 𝑘 ∥ 𝑥 ) ) |
130 |
129
|
notbid |
⊢ ( 𝑝 = 𝑘 → ( ¬ 𝑝 ∥ 𝑥 ↔ ¬ 𝑘 ∥ 𝑥 ) ) |
131 |
|
breq2 |
⊢ ( 𝑛 = 𝑥 → ( 𝑝 ∥ 𝑛 ↔ 𝑝 ∥ 𝑥 ) ) |
132 |
131
|
notbid |
⊢ ( 𝑛 = 𝑥 → ( ¬ 𝑝 ∥ 𝑛 ↔ ¬ 𝑝 ∥ 𝑥 ) ) |
133 |
132
|
ralbidv |
⊢ ( 𝑛 = 𝑥 → ( ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑛 ↔ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑥 ) ) |
134 |
133 4
|
elrab2 |
⊢ ( 𝑥 ∈ 𝑀 ↔ ( 𝑥 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑥 ) ) |
135 |
134
|
simprbi |
⊢ ( 𝑥 ∈ 𝑀 → ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑥 ) |
136 |
135
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) ∧ ( 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ ℙ ) ) → ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑥 ) |
137 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) ∧ ( 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ ℙ ) ) → 𝑘 ∈ ℙ ) |
138 |
|
noel |
⊢ ¬ 𝑘 ∈ ∅ |
139 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) ∧ ( 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ ℙ ) ) → 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) |
140 |
139
|
biantrud |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) ∧ ( 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ ℙ ) ) → ( 𝑘 ∈ ( 1 ... 𝐾 ) ↔ ( 𝑘 ∈ ( 1 ... 𝐾 ) ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) ) ) |
141 |
|
elin |
⊢ ( 𝑘 ∈ ( ( 1 ... 𝐾 ) ∩ ( ( 𝐾 + 1 ) ... 𝑁 ) ) ↔ ( 𝑘 ∈ ( 1 ... 𝐾 ) ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) ) |
142 |
140 141
|
bitr4di |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) ∧ ( 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ ℙ ) ) → ( 𝑘 ∈ ( 1 ... 𝐾 ) ↔ 𝑘 ∈ ( ( 1 ... 𝐾 ) ∩ ( ( 𝐾 + 1 ) ... 𝑁 ) ) ) ) |
143 |
81
|
ltp1d |
⊢ ( 𝜑 → 𝐾 < ( 𝐾 + 1 ) ) |
144 |
|
fzdisj |
⊢ ( 𝐾 < ( 𝐾 + 1 ) → ( ( 1 ... 𝐾 ) ∩ ( ( 𝐾 + 1 ) ... 𝑁 ) ) = ∅ ) |
145 |
143 144
|
syl |
⊢ ( 𝜑 → ( ( 1 ... 𝐾 ) ∩ ( ( 𝐾 + 1 ) ... 𝑁 ) ) = ∅ ) |
146 |
145
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) ∧ ( 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ ℙ ) ) → ( ( 1 ... 𝐾 ) ∩ ( ( 𝐾 + 1 ) ... 𝑁 ) ) = ∅ ) |
147 |
146
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) ∧ ( 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ ℙ ) ) → ( 𝑘 ∈ ( ( 1 ... 𝐾 ) ∩ ( ( 𝐾 + 1 ) ... 𝑁 ) ) ↔ 𝑘 ∈ ∅ ) ) |
148 |
142 147
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) ∧ ( 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ ℙ ) ) → ( 𝑘 ∈ ( 1 ... 𝐾 ) ↔ 𝑘 ∈ ∅ ) ) |
149 |
138 148
|
mtbiri |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) ∧ ( 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ ℙ ) ) → ¬ 𝑘 ∈ ( 1 ... 𝐾 ) ) |
150 |
137 149
|
eldifd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) ∧ ( 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ ℙ ) ) → 𝑘 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) |
151 |
130 136 150
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) ∧ ( 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ ℙ ) ) → ¬ 𝑘 ∥ 𝑥 ) |
152 |
151
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → ( 𝑘 ∈ ℙ → ¬ 𝑘 ∥ 𝑥 ) ) |
153 |
|
imnan |
⊢ ( ( 𝑘 ∈ ℙ → ¬ 𝑘 ∥ 𝑥 ) ↔ ¬ ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥 ) ) |
154 |
152 153
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → ¬ ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥 ) ) |
155 |
33
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → 𝑘 ∈ ℕ ) |
156 |
155 40
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → ( 𝑊 ‘ 𝑘 ) = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛 ) } ) |
157 |
156
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → ( 𝑥 ∈ ( 𝑊 ‘ 𝑘 ) ↔ 𝑥 ∈ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛 ) } ) ) |
158 |
|
breq2 |
⊢ ( 𝑛 = 𝑥 → ( 𝑘 ∥ 𝑛 ↔ 𝑘 ∥ 𝑥 ) ) |
159 |
158
|
anbi2d |
⊢ ( 𝑛 = 𝑥 → ( ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛 ) ↔ ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥 ) ) ) |
160 |
159
|
elrab |
⊢ ( 𝑥 ∈ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛 ) } ↔ ( 𝑥 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥 ) ) ) |
161 |
160
|
simprbi |
⊢ ( 𝑥 ∈ { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛 ) } → ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥 ) ) |
162 |
157 161
|
syl6bi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → ( 𝑥 ∈ ( 𝑊 ‘ 𝑘 ) → ( 𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥 ) ) ) |
163 |
154 162
|
mtod |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → ¬ 𝑥 ∈ ( 𝑊 ‘ 𝑘 ) ) |
164 |
163
|
nrexdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → ¬ ∃ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) 𝑥 ∈ ( 𝑊 ‘ 𝑘 ) ) |
165 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) 𝑥 ∈ ( 𝑊 ‘ 𝑘 ) ) |
166 |
164 165
|
sylnibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → ¬ 𝑥 ∈ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) |
167 |
166
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑀 → ¬ 𝑥 ∈ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) |
168 |
|
imnan |
⊢ ( ( 𝑥 ∈ 𝑀 → ¬ 𝑥 ∈ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ↔ ¬ ( 𝑥 ∈ 𝑀 ∧ 𝑥 ∈ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) |
169 |
167 168
|
sylib |
⊢ ( 𝜑 → ¬ ( 𝑥 ∈ 𝑀 ∧ 𝑥 ∈ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) |
170 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑀 ∩ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ↔ ( 𝑥 ∈ 𝑀 ∧ 𝑥 ∈ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) |
171 |
169 170
|
sylnibr |
⊢ ( 𝜑 → ¬ 𝑥 ∈ ( 𝑀 ∩ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) |
172 |
171
|
eq0rdv |
⊢ ( 𝜑 → ( 𝑀 ∩ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) = ∅ ) |
173 |
|
hashun |
⊢ ( ( 𝑀 ∈ Fin ∧ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ∈ Fin ∧ ( 𝑀 ∩ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) = ∅ ) → ( ♯ ‘ ( 𝑀 ∪ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) = ( ( ♯ ‘ 𝑀 ) + ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) ) |
174 |
126 128 172 173
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑀 ∪ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) = ( ( ♯ ‘ 𝑀 ) + ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) ) |
175 |
28 125 174
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 / 2 ) + ( 𝑁 / 2 ) ) = ( ( ♯ ‘ 𝑀 ) + ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) ) |
176 |
|
hashcl |
⊢ ( ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ∈ Fin → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ∈ ℕ0 ) |
177 |
128 176
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ∈ ℕ0 ) |
178 |
177
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ∈ ℝ ) |
179 |
|
fzfid |
⊢ ( 𝜑 → ( ( 𝐾 + 1 ) ... 𝑁 ) ∈ Fin ) |
180 |
30 32
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
181 |
|
nnrecre |
⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) |
182 |
|
0re |
⊢ 0 ∈ ℝ |
183 |
|
ifcl |
⊢ ( ( ( 1 / 𝑘 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℝ ) |
184 |
181 182 183
|
sylancl |
⊢ ( 𝑘 ∈ ℕ → if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℝ ) |
185 |
180 184
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) → if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℝ ) |
186 |
31 185
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℝ ) |
187 |
179 186
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℝ ) |
188 |
8 187
|
remulcld |
⊢ ( 𝜑 → ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ∈ ℝ ) |
189 |
1 2 3 4 5 6 7
|
prmreclem4 |
⊢ ( 𝜑 → ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ) |
190 |
|
eluz |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ 𝑁 ≤ 𝐾 ) ) |
191 |
65 62 190
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ 𝑁 ≤ 𝐾 ) ) |
192 |
|
nnleltp1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( 𝑁 ≤ 𝐾 ↔ 𝑁 < ( 𝐾 + 1 ) ) ) |
193 |
3 2 192
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ≤ 𝐾 ↔ 𝑁 < ( 𝐾 + 1 ) ) ) |
194 |
|
fzn |
⊢ ( ( ( 𝐾 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 < ( 𝐾 + 1 ) ↔ ( ( 𝐾 + 1 ) ... 𝑁 ) = ∅ ) ) |
195 |
63 65 194
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 < ( 𝐾 + 1 ) ↔ ( ( 𝐾 + 1 ) ... 𝑁 ) = ∅ ) ) |
196 |
191 193 195
|
3bitrd |
⊢ ( 𝜑 → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ ( ( 𝐾 + 1 ) ... 𝑁 ) = ∅ ) ) |
197 |
|
0le0 |
⊢ 0 ≤ 0 |
198 |
27
|
mul01d |
⊢ ( 𝜑 → ( 𝑁 · 0 ) = 0 ) |
199 |
197 198
|
breqtrrid |
⊢ ( 𝜑 → 0 ≤ ( 𝑁 · 0 ) ) |
200 |
|
iuneq1 |
⊢ ( ( ( 𝐾 + 1 ) ... 𝑁 ) = ∅ → ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) = ∪ 𝑘 ∈ ∅ ( 𝑊 ‘ 𝑘 ) ) |
201 |
|
0iun |
⊢ ∪ 𝑘 ∈ ∅ ( 𝑊 ‘ 𝑘 ) = ∅ |
202 |
200 201
|
eqtrdi |
⊢ ( ( ( 𝐾 + 1 ) ... 𝑁 ) = ∅ → ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) = ∅ ) |
203 |
202
|
fveq2d |
⊢ ( ( ( 𝐾 + 1 ) ... 𝑁 ) = ∅ → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) = ( ♯ ‘ ∅ ) ) |
204 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
205 |
203 204
|
eqtrdi |
⊢ ( ( ( 𝐾 + 1 ) ... 𝑁 ) = ∅ → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) = 0 ) |
206 |
|
sumeq1 |
⊢ ( ( ( 𝐾 + 1 ) ... 𝑁 ) = ∅ → Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) = Σ 𝑘 ∈ ∅ if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) |
207 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) = 0 |
208 |
206 207
|
eqtrdi |
⊢ ( ( ( 𝐾 + 1 ) ... 𝑁 ) = ∅ → Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) = 0 ) |
209 |
208
|
oveq2d |
⊢ ( ( ( 𝐾 + 1 ) ... 𝑁 ) = ∅ → ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) = ( 𝑁 · 0 ) ) |
210 |
205 209
|
breq12d |
⊢ ( ( ( 𝐾 + 1 ) ... 𝑁 ) = ∅ → ( ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ↔ 0 ≤ ( 𝑁 · 0 ) ) ) |
211 |
199 210
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( ( 𝐾 + 1 ) ... 𝑁 ) = ∅ → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ) |
212 |
196 211
|
sylbid |
⊢ ( 𝜑 → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) ) |
213 |
|
uztric |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ∨ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) |
214 |
62 65 213
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ∨ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) |
215 |
189 212 214
|
mpjaod |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ≤ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) |
216 |
|
eqid |
⊢ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) = ( ℤ≥ ‘ ( 𝐾 + 1 ) ) |
217 |
|
eleq1w |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ ) ) |
218 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 1 / 𝑛 ) = ( 1 / 𝑘 ) ) |
219 |
217 218
|
ifbieq1d |
⊢ ( 𝑛 = 𝑘 → if ( 𝑛 ∈ ℙ , ( 1 / 𝑛 ) , 0 ) = if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) |
220 |
|
ovex |
⊢ ( 1 / 𝑘 ) ∈ V |
221 |
|
c0ex |
⊢ 0 ∈ V |
222 |
220 221
|
ifex |
⊢ if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ V |
223 |
219 1 222
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) |
224 |
180 223
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) |
225 |
184
|
recnd |
⊢ ( 𝑘 ∈ ℕ → if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℂ ) |
226 |
223 225
|
eqeltrd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
227 |
226
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
228 |
75 30 227
|
iserex |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq ( 𝐾 + 1 ) ( + , 𝐹 ) ∈ dom ⇝ ) ) |
229 |
5 228
|
mpbid |
⊢ ( 𝜑 → seq ( 𝐾 + 1 ) ( + , 𝐹 ) ∈ dom ⇝ ) |
230 |
216 63 224 185 229
|
isumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℝ ) |
231 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
232 |
231
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℝ ) |
233 |
|
fzssuz |
⊢ ( ( 𝐾 + 1 ) ... 𝑁 ) ⊆ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) |
234 |
233
|
a1i |
⊢ ( 𝜑 → ( ( 𝐾 + 1 ) ... 𝑁 ) ⊆ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) |
235 |
|
nnrp |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) |
236 |
235
|
rpreccld |
⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ+ ) |
237 |
236
|
rpge0d |
⊢ ( 𝑘 ∈ ℕ → 0 ≤ ( 1 / 𝑘 ) ) |
238 |
|
breq2 |
⊢ ( ( 1 / 𝑘 ) = if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) → ( 0 ≤ ( 1 / 𝑘 ) ↔ 0 ≤ if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) |
239 |
|
breq2 |
⊢ ( 0 = if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) → ( 0 ≤ 0 ↔ 0 ≤ if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) ) |
240 |
238 239
|
ifboth |
⊢ ( ( 0 ≤ ( 1 / 𝑘 ) ∧ 0 ≤ 0 ) → 0 ≤ if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) |
241 |
237 197 240
|
sylancl |
⊢ ( 𝑘 ∈ ℕ → 0 ≤ if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) |
242 |
180 241
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) → 0 ≤ if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) |
243 |
216 63 179 234 224 185 242 229
|
isumless |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) |
244 |
187 230 232 243 6
|
lelttrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) < ( 1 / 2 ) ) |
245 |
3
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑁 ) |
246 |
|
ltmul2 |
⊢ ( ( Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) < ( 1 / 2 ) ↔ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) < ( 𝑁 · ( 1 / 2 ) ) ) ) |
247 |
187 232 8 245 246
|
syl112anc |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) < ( 1 / 2 ) ↔ ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) < ( 𝑁 · ( 1 / 2 ) ) ) ) |
248 |
244 247
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) < ( 𝑁 · ( 1 / 2 ) ) ) |
249 |
|
2cn |
⊢ 2 ∈ ℂ |
250 |
|
2ne0 |
⊢ 2 ≠ 0 |
251 |
|
divrec |
⊢ ( ( 𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( 𝑁 / 2 ) = ( 𝑁 · ( 1 / 2 ) ) ) |
252 |
249 250 251
|
mp3an23 |
⊢ ( 𝑁 ∈ ℂ → ( 𝑁 / 2 ) = ( 𝑁 · ( 1 / 2 ) ) ) |
253 |
27 252
|
syl |
⊢ ( 𝜑 → ( 𝑁 / 2 ) = ( 𝑁 · ( 1 / 2 ) ) ) |
254 |
248 253
|
breqtrrd |
⊢ ( 𝜑 → ( 𝑁 · Σ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) < ( 𝑁 / 2 ) ) |
255 |
178 188 9 215 254
|
lelttrd |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) < ( 𝑁 / 2 ) ) |
256 |
178 9 17 255
|
ltadd2dd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑀 ) + ( ♯ ‘ ∪ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝑊 ‘ 𝑘 ) ) ) < ( ( ♯ ‘ 𝑀 ) + ( 𝑁 / 2 ) ) ) |
257 |
175 256
|
eqbrtrd |
⊢ ( 𝜑 → ( ( 𝑁 / 2 ) + ( 𝑁 / 2 ) ) < ( ( ♯ ‘ 𝑀 ) + ( 𝑁 / 2 ) ) ) |
258 |
9 17 9
|
ltadd1d |
⊢ ( 𝜑 → ( ( 𝑁 / 2 ) < ( ♯ ‘ 𝑀 ) ↔ ( ( 𝑁 / 2 ) + ( 𝑁 / 2 ) ) < ( ( ♯ ‘ 𝑀 ) + ( 𝑁 / 2 ) ) ) ) |
259 |
257 258
|
mpbird |
⊢ ( 𝜑 → ( 𝑁 / 2 ) < ( ♯ ‘ 𝑀 ) ) |
260 |
|
oveq1 |
⊢ ( 𝑘 = 𝑟 → ( 𝑘 ↑ 2 ) = ( 𝑟 ↑ 2 ) ) |
261 |
260
|
breq1d |
⊢ ( 𝑘 = 𝑟 → ( ( 𝑘 ↑ 2 ) ∥ 𝑥 ↔ ( 𝑟 ↑ 2 ) ∥ 𝑥 ) ) |
262 |
261
|
cbvrabv |
⊢ { 𝑘 ∈ ℕ ∣ ( 𝑘 ↑ 2 ) ∥ 𝑥 } = { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑥 } |
263 |
|
breq2 |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑟 ↑ 2 ) ∥ 𝑥 ↔ ( 𝑟 ↑ 2 ) ∥ 𝑛 ) ) |
264 |
263
|
rabbidv |
⊢ ( 𝑥 = 𝑛 → { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑥 } = { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑛 } ) |
265 |
262 264
|
eqtrid |
⊢ ( 𝑥 = 𝑛 → { 𝑘 ∈ ℕ ∣ ( 𝑘 ↑ 2 ) ∥ 𝑥 } = { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑛 } ) |
266 |
265
|
supeq1d |
⊢ ( 𝑥 = 𝑛 → sup ( { 𝑘 ∈ ℕ ∣ ( 𝑘 ↑ 2 ) ∥ 𝑥 } , ℝ , < ) = sup ( { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑛 } , ℝ , < ) ) |
267 |
266
|
cbvmptv |
⊢ ( 𝑥 ∈ ℕ ↦ sup ( { 𝑘 ∈ ℕ ∣ ( 𝑘 ↑ 2 ) ∥ 𝑥 } , ℝ , < ) ) = ( 𝑛 ∈ ℕ ↦ sup ( { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑛 } , ℝ , < ) ) |
268 |
1 2 3 4 267
|
prmreclem3 |
⊢ ( 𝜑 → ( ♯ ‘ 𝑀 ) ≤ ( ( 2 ↑ 𝐾 ) · ( √ ‘ 𝑁 ) ) ) |
269 |
9 17 26 259 268
|
ltletrd |
⊢ ( 𝜑 → ( 𝑁 / 2 ) < ( ( 2 ↑ 𝐾 ) · ( √ ‘ 𝑁 ) ) ) |