| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							prmrec.1 | 
							⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( 1  /  𝑛 ) ,  0 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							nnuz | 
							⊢ ℕ  =  ( ℤ≥ ‘ 1 )  | 
						
						
							| 3 | 
							
								
							 | 
							1zzd | 
							⊢ ( ⊤  →  1  ∈  ℤ )  | 
						
						
							| 4 | 
							
								
							 | 
							nnrecre | 
							⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  𝑛 )  ∈  ℝ )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantl | 
							⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 1  /  𝑛 )  ∈  ℝ )  | 
						
						
							| 6 | 
							
								
							 | 
							0re | 
							⊢ 0  ∈  ℝ  | 
						
						
							| 7 | 
							
								
							 | 
							ifcl | 
							⊢ ( ( ( 1  /  𝑛 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 𝑛  ∈  ℙ ,  ( 1  /  𝑛 ) ,  0 )  ∈  ℝ )  | 
						
						
							| 8 | 
							
								5 6 7
							 | 
							sylancl | 
							⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  if ( 𝑛  ∈  ℙ ,  ( 1  /  𝑛 ) ,  0 )  ∈  ℝ )  | 
						
						
							| 9 | 
							
								8 1
							 | 
							fmptd | 
							⊢ ( ⊤  →  𝐹 : ℕ ⟶ ℝ )  | 
						
						
							| 10 | 
							
								9
							 | 
							ffvelcdmda | 
							⊢ ( ( ⊤  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ )  | 
						
						
							| 11 | 
							
								2 3 10
							 | 
							serfre | 
							⊢ ( ⊤  →  seq 1 (  +  ,  𝐹 ) : ℕ ⟶ ℝ )  | 
						
						
							| 12 | 
							
								11
							 | 
							mptru | 
							⊢ seq 1 (  +  ,  𝐹 ) : ℕ ⟶ ℝ  | 
						
						
							| 13 | 
							
								
							 | 
							frn | 
							⊢ ( seq 1 (  +  ,  𝐹 ) : ℕ ⟶ ℝ  →  ran  seq 1 (  +  ,  𝐹 )  ⊆  ℝ )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							mp1i | 
							⊢ ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   →  ran  seq 1 (  +  ,  𝐹 )  ⊆  ℝ )  | 
						
						
							| 15 | 
							
								
							 | 
							1nn | 
							⊢ 1  ∈  ℕ  | 
						
						
							| 16 | 
							
								12
							 | 
							fdmi | 
							⊢ dom  seq 1 (  +  ,  𝐹 )  =  ℕ  | 
						
						
							| 17 | 
							
								15 16
							 | 
							eleqtrri | 
							⊢ 1  ∈  dom  seq 1 (  +  ,  𝐹 )  | 
						
						
							| 18 | 
							
								
							 | 
							ne0i | 
							⊢ ( 1  ∈  dom  seq 1 (  +  ,  𝐹 )  →  dom  seq 1 (  +  ,  𝐹 )  ≠  ∅ )  | 
						
						
							| 19 | 
							
								
							 | 
							dm0rn0 | 
							⊢ ( dom  seq 1 (  +  ,  𝐹 )  =  ∅  ↔  ran  seq 1 (  +  ,  𝐹 )  =  ∅ )  | 
						
						
							| 20 | 
							
								19
							 | 
							necon3bii | 
							⊢ ( dom  seq 1 (  +  ,  𝐹 )  ≠  ∅  ↔  ran  seq 1 (  +  ,  𝐹 )  ≠  ∅ )  | 
						
						
							| 21 | 
							
								18 20
							 | 
							sylib | 
							⊢ ( 1  ∈  dom  seq 1 (  +  ,  𝐹 )  →  ran  seq 1 (  +  ,  𝐹 )  ≠  ∅ )  | 
						
						
							| 22 | 
							
								17 21
							 | 
							mp1i | 
							⊢ ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   →  ran  seq 1 (  +  ,  𝐹 )  ≠  ∅ )  | 
						
						
							| 23 | 
							
								
							 | 
							1zzd | 
							⊢ ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   →  1  ∈  ℤ )  | 
						
						
							| 24 | 
							
								
							 | 
							climdm | 
							⊢ ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ↔  seq 1 (  +  ,  𝐹 )  ⇝  (  ⇝  ‘ seq 1 (  +  ,  𝐹 ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							biimpi | 
							⊢ ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   →  seq 1 (  +  ,  𝐹 )  ⇝  (  ⇝  ‘ seq 1 (  +  ,  𝐹 ) ) )  | 
						
						
							| 26 | 
							
								12
							 | 
							a1i | 
							⊢ ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   →  seq 1 (  +  ,  𝐹 ) : ℕ ⟶ ℝ )  | 
						
						
							| 27 | 
							
								26
							 | 
							ffvelcdmda | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 )  ∈  ℝ )  | 
						
						
							| 28 | 
							
								2 23 25 27
							 | 
							climrecl | 
							⊢ ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   →  (  ⇝  ‘ seq 1 (  +  ,  𝐹 ) )  ∈  ℝ )  | 
						
						
							| 29 | 
							
								
							 | 
							simpr | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ )  | 
						
						
							| 30 | 
							
								25
							 | 
							adantr | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  seq 1 (  +  ,  𝐹 )  ⇝  (  ⇝  ‘ seq 1 (  +  ,  𝐹 ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑛  =  𝑗  →  ( 𝑛  ∈  ℙ  ↔  𝑗  ∈  ℙ ) )  | 
						
						
							| 32 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑛  =  𝑗  →  ( 1  /  𝑛 )  =  ( 1  /  𝑗 ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							ifbieq1d | 
							⊢ ( 𝑛  =  𝑗  →  if ( 𝑛  ∈  ℙ ,  ( 1  /  𝑛 ) ,  0 )  =  if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							prmnn | 
							⊢ ( 𝑗  ∈  ℙ  →  𝑗  ∈  ℕ )  | 
						
						
							| 35 | 
							
								34
							 | 
							adantl | 
							⊢ ( ( ⊤  ∧  𝑗  ∈  ℙ )  →  𝑗  ∈  ℕ )  | 
						
						
							| 36 | 
							
								35
							 | 
							nnrecred | 
							⊢ ( ( ⊤  ∧  𝑗  ∈  ℙ )  →  ( 1  /  𝑗 )  ∈  ℝ )  | 
						
						
							| 37 | 
							
								6
							 | 
							a1i | 
							⊢ ( ( ⊤  ∧  ¬  𝑗  ∈  ℙ )  →  0  ∈  ℝ )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							ifclda | 
							⊢ ( ⊤  →  if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  ∈  ℝ )  | 
						
						
							| 39 | 
							
								38
							 | 
							mptru | 
							⊢ if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  ∈  ℝ  | 
						
						
							| 40 | 
							
								39
							 | 
							elexi | 
							⊢ if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  ∈  V  | 
						
						
							| 41 | 
							
								33 1 40
							 | 
							fvmpt | 
							⊢ ( 𝑗  ∈  ℕ  →  ( 𝐹 ‘ 𝑗 )  =  if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							adantl | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  =  if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 ) )  | 
						
						
							| 43 | 
							
								39
							 | 
							a1i | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑗  ∈  ℕ )  →  if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  ∈  ℝ )  | 
						
						
							| 44 | 
							
								42 43
							 | 
							eqeltrd | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ )  | 
						
						
							| 45 | 
							
								44
							 | 
							adantlr | 
							⊢ ( ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ )  | 
						
						
							| 46 | 
							
								
							 | 
							nnrp | 
							⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℝ+ )  | 
						
						
							| 47 | 
							
								46
							 | 
							adantl | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ℝ+ )  | 
						
						
							| 48 | 
							
								47
							 | 
							rpreccld | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑗  ∈  ℕ )  →  ( 1  /  𝑗 )  ∈  ℝ+ )  | 
						
						
							| 49 | 
							
								48
							 | 
							rpge0d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑗  ∈  ℕ )  →  0  ≤  ( 1  /  𝑗 ) )  | 
						
						
							| 50 | 
							
								
							 | 
							0le0 | 
							⊢ 0  ≤  0  | 
						
						
							| 51 | 
							
								
							 | 
							breq2 | 
							⊢ ( ( 1  /  𝑗 )  =  if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  →  ( 0  ≤  ( 1  /  𝑗 )  ↔  0  ≤  if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 ) ) )  | 
						
						
							| 52 | 
							
								
							 | 
							breq2 | 
							⊢ ( 0  =  if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  →  ( 0  ≤  0  ↔  0  ≤  if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 ) ) )  | 
						
						
							| 53 | 
							
								51 52
							 | 
							ifboth | 
							⊢ ( ( 0  ≤  ( 1  /  𝑗 )  ∧  0  ≤  0 )  →  0  ≤  if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 ) )  | 
						
						
							| 54 | 
							
								49 50 53
							 | 
							sylancl | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑗  ∈  ℕ )  →  0  ≤  if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 ) )  | 
						
						
							| 55 | 
							
								54 42
							 | 
							breqtrrd | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑗  ∈  ℕ )  →  0  ≤  ( 𝐹 ‘ 𝑗 ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							adantlr | 
							⊢ ( ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  →  0  ≤  ( 𝐹 ‘ 𝑗 ) )  | 
						
						
							| 57 | 
							
								2 29 30 45 56
							 | 
							climserle | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 )  ≤  (  ⇝  ‘ seq 1 (  +  ,  𝐹 ) ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							ralrimiva | 
							⊢ ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   →  ∀ 𝑘  ∈  ℕ ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 )  ≤  (  ⇝  ‘ seq 1 (  +  ,  𝐹 ) ) )  | 
						
						
							| 59 | 
							
								
							 | 
							brralrspcev | 
							⊢ ( ( (  ⇝  ‘ seq 1 (  +  ,  𝐹 ) )  ∈  ℝ  ∧  ∀ 𝑘  ∈  ℕ ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 )  ≤  (  ⇝  ‘ seq 1 (  +  ,  𝐹 ) ) )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ℕ ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 )  ≤  𝑥 )  | 
						
						
							| 60 | 
							
								28 58 59
							 | 
							syl2anc | 
							⊢ ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ℕ ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 )  ≤  𝑥 )  | 
						
						
							| 61 | 
							
								
							 | 
							ffn | 
							⊢ ( seq 1 (  +  ,  𝐹 ) : ℕ ⟶ ℝ  →  seq 1 (  +  ,  𝐹 )  Fn  ℕ )  | 
						
						
							| 62 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑧  =  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 )  →  ( 𝑧  ≤  𝑥  ↔  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 )  ≤  𝑥 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							ralrn | 
							⊢ ( seq 1 (  +  ,  𝐹 )  Fn  ℕ  →  ( ∀ 𝑧  ∈  ran  seq 1 (  +  ,  𝐹 ) 𝑧  ≤  𝑥  ↔  ∀ 𝑘  ∈  ℕ ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 )  ≤  𝑥 ) )  | 
						
						
							| 64 | 
							
								12 61 63
							 | 
							mp2b | 
							⊢ ( ∀ 𝑧  ∈  ran  seq 1 (  +  ,  𝐹 ) 𝑧  ≤  𝑥  ↔  ∀ 𝑘  ∈  ℕ ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 )  ≤  𝑥 )  | 
						
						
							| 65 | 
							
								64
							 | 
							rexbii | 
							⊢ ( ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  seq 1 (  +  ,  𝐹 ) 𝑧  ≤  𝑥  ↔  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ℕ ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 )  ≤  𝑥 )  | 
						
						
							| 66 | 
							
								60 65
							 | 
							sylibr | 
							⊢ ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  seq 1 (  +  ,  𝐹 ) 𝑧  ≤  𝑥 )  | 
						
						
							| 67 | 
							
								14 22 66
							 | 
							suprcld | 
							⊢ ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   →  sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  ∈  ℝ )  | 
						
						
							| 68 | 
							
								
							 | 
							2rp | 
							⊢ 2  ∈  ℝ+  | 
						
						
							| 69 | 
							
								
							 | 
							rpreccl | 
							⊢ ( 2  ∈  ℝ+  →  ( 1  /  2 )  ∈  ℝ+ )  | 
						
						
							| 70 | 
							
								68 69
							 | 
							ax-mp | 
							⊢ ( 1  /  2 )  ∈  ℝ+  | 
						
						
							| 71 | 
							
								
							 | 
							ltsubrp | 
							⊢ ( ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  ∈  ℝ  ∧  ( 1  /  2 )  ∈  ℝ+ )  →  ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  <  sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  ) )  | 
						
						
							| 72 | 
							
								67 70 71
							 | 
							sylancl | 
							⊢ ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   →  ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  <  sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  ) )  | 
						
						
							| 73 | 
							
								
							 | 
							halfre | 
							⊢ ( 1  /  2 )  ∈  ℝ  | 
						
						
							| 74 | 
							
								
							 | 
							resubcl | 
							⊢ ( ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  ∈  ℝ  ∧  ( 1  /  2 )  ∈  ℝ )  →  ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  ∈  ℝ )  | 
						
						
							| 75 | 
							
								67 73 74
							 | 
							sylancl | 
							⊢ ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   →  ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  ∈  ℝ )  | 
						
						
							| 76 | 
							
								
							 | 
							suprlub | 
							⊢ ( ( ( ran  seq 1 (  +  ,  𝐹 )  ⊆  ℝ  ∧  ran  seq 1 (  +  ,  𝐹 )  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  seq 1 (  +  ,  𝐹 ) 𝑧  ≤  𝑥 )  ∧  ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  ∈  ℝ )  →  ( ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  <  sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  ↔  ∃ 𝑦  ∈  ran  seq 1 (  +  ,  𝐹 ) ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  <  𝑦 ) )  | 
						
						
							| 77 | 
							
								14 22 66 75 76
							 | 
							syl31anc | 
							⊢ ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   →  ( ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  <  sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  ↔  ∃ 𝑦  ∈  ran  seq 1 (  +  ,  𝐹 ) ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  <  𝑦 ) )  | 
						
						
							| 78 | 
							
								72 77
							 | 
							mpbid | 
							⊢ ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   →  ∃ 𝑦  ∈  ran  seq 1 (  +  ,  𝐹 ) ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  <  𝑦 )  | 
						
						
							| 79 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑦  =  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 )  →  ( ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  <  𝑦  ↔  ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  <  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 ) ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							rexrn | 
							⊢ ( seq 1 (  +  ,  𝐹 )  Fn  ℕ  →  ( ∃ 𝑦  ∈  ran  seq 1 (  +  ,  𝐹 ) ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  <  𝑦  ↔  ∃ 𝑘  ∈  ℕ ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  <  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 ) ) )  | 
						
						
							| 81 | 
							
								12 61 80
							 | 
							mp2b | 
							⊢ ( ∃ 𝑦  ∈  ran  seq 1 (  +  ,  𝐹 ) ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  <  𝑦  ↔  ∃ 𝑘  ∈  ℕ ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  <  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 ) )  | 
						
						
							| 82 | 
							
								78 81
							 | 
							sylib | 
							⊢ ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   →  ∃ 𝑘  ∈  ℕ ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  <  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 ) )  | 
						
						
							| 83 | 
							
								
							 | 
							2re | 
							⊢ 2  ∈  ℝ  | 
						
						
							| 84 | 
							
								
							 | 
							2nn | 
							⊢ 2  ∈  ℕ  | 
						
						
							| 85 | 
							
								
							 | 
							nnmulcl | 
							⊢ ( ( 2  ∈  ℕ  ∧  𝑘  ∈  ℕ )  →  ( 2  ·  𝑘 )  ∈  ℕ )  | 
						
						
							| 86 | 
							
								84 29 85
							 | 
							sylancr | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( 2  ·  𝑘 )  ∈  ℕ )  | 
						
						
							| 87 | 
							
								86
							 | 
							peano2nnd | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℕ )  | 
						
						
							| 88 | 
							
								87
							 | 
							nnnn0d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℕ0 )  | 
						
						
							| 89 | 
							
								
							 | 
							reexpcl | 
							⊢ ( ( 2  ∈  ℝ  ∧  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℕ0 )  →  ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℝ )  | 
						
						
							| 90 | 
							
								83 88 89
							 | 
							sylancr | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℝ )  | 
						
						
							| 91 | 
							
								90
							 | 
							ltnrd | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ¬  ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  <  ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) ) )  | 
						
						
							| 92 | 
							
								29
							 | 
							adantr | 
							⊢ ( ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  ∧  Σ 𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  <  ( 1  /  2 ) )  →  𝑘  ∈  ℕ )  | 
						
						
							| 93 | 
							
								
							 | 
							peano2nn | 
							⊢ ( 𝑘  ∈  ℕ  →  ( 𝑘  +  1 )  ∈  ℕ )  | 
						
						
							| 94 | 
							
								93
							 | 
							adantl | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( 𝑘  +  1 )  ∈  ℕ )  | 
						
						
							| 95 | 
							
								94
							 | 
							nnnn0d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( 𝑘  +  1 )  ∈  ℕ0 )  | 
						
						
							| 96 | 
							
								
							 | 
							nnexpcl | 
							⊢ ( ( 2  ∈  ℕ  ∧  ( 𝑘  +  1 )  ∈  ℕ0 )  →  ( 2 ↑ ( 𝑘  +  1 ) )  ∈  ℕ )  | 
						
						
							| 97 | 
							
								84 95 96
							 | 
							sylancr | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( 2 ↑ ( 𝑘  +  1 ) )  ∈  ℕ )  | 
						
						
							| 98 | 
							
								97
							 | 
							nnsqcld | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( 2 ↑ ( 𝑘  +  1 ) ) ↑ 2 )  ∈  ℕ )  | 
						
						
							| 99 | 
							
								98
							 | 
							adantr | 
							⊢ ( ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  ∧  Σ 𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  <  ( 1  /  2 ) )  →  ( ( 2 ↑ ( 𝑘  +  1 ) ) ↑ 2 )  ∈  ℕ )  | 
						
						
							| 100 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑝  =  𝑤  →  ( 𝑝  ∥  𝑟  ↔  𝑤  ∥  𝑟 ) )  | 
						
						
							| 101 | 
							
								100
							 | 
							notbid | 
							⊢ ( 𝑝  =  𝑤  →  ( ¬  𝑝  ∥  𝑟  ↔  ¬  𝑤  ∥  𝑟 ) )  | 
						
						
							| 102 | 
							
								101
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑝  ∈  ( ℙ  ∖  ( 1 ... 𝑘 ) ) ¬  𝑝  ∥  𝑟  ↔  ∀ 𝑤  ∈  ( ℙ  ∖  ( 1 ... 𝑘 ) ) ¬  𝑤  ∥  𝑟 )  | 
						
						
							| 103 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑟  =  𝑛  →  ( 𝑤  ∥  𝑟  ↔  𝑤  ∥  𝑛 ) )  | 
						
						
							| 104 | 
							
								103
							 | 
							notbid | 
							⊢ ( 𝑟  =  𝑛  →  ( ¬  𝑤  ∥  𝑟  ↔  ¬  𝑤  ∥  𝑛 ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							ralbidv | 
							⊢ ( 𝑟  =  𝑛  →  ( ∀ 𝑤  ∈  ( ℙ  ∖  ( 1 ... 𝑘 ) ) ¬  𝑤  ∥  𝑟  ↔  ∀ 𝑤  ∈  ( ℙ  ∖  ( 1 ... 𝑘 ) ) ¬  𝑤  ∥  𝑛 ) )  | 
						
						
							| 106 | 
							
								102 105
							 | 
							bitrid | 
							⊢ ( 𝑟  =  𝑛  →  ( ∀ 𝑝  ∈  ( ℙ  ∖  ( 1 ... 𝑘 ) ) ¬  𝑝  ∥  𝑟  ↔  ∀ 𝑤  ∈  ( ℙ  ∖  ( 1 ... 𝑘 ) ) ¬  𝑤  ∥  𝑛 ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							cbvrabv | 
							⊢ { 𝑟  ∈  ( 1 ... ( ( 2 ↑ ( 𝑘  +  1 ) ) ↑ 2 ) )  ∣  ∀ 𝑝  ∈  ( ℙ  ∖  ( 1 ... 𝑘 ) ) ¬  𝑝  ∥  𝑟 }  =  { 𝑛  ∈  ( 1 ... ( ( 2 ↑ ( 𝑘  +  1 ) ) ↑ 2 ) )  ∣  ∀ 𝑤  ∈  ( ℙ  ∖  ( 1 ... 𝑘 ) ) ¬  𝑤  ∥  𝑛 }  | 
						
						
							| 108 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  ∧  Σ 𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  <  ( 1  /  2 ) )  →  seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝  )  | 
						
						
							| 109 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑚  =  𝑗  →  ( 𝑚  ∈  ℙ  ↔  𝑗  ∈  ℙ ) )  | 
						
						
							| 110 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑚  =  𝑗  →  ( 1  /  𝑚 )  =  ( 1  /  𝑗 ) )  | 
						
						
							| 111 | 
							
								109 110
							 | 
							ifbieq1d | 
							⊢ ( 𝑚  =  𝑗  →  if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 )  =  if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 ) )  | 
						
						
							| 112 | 
							
								111
							 | 
							cbvsumv | 
							⊢ Σ 𝑚  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 )  =  Σ 𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  | 
						
						
							| 113 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  ∧  Σ 𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  <  ( 1  /  2 ) )  →  Σ 𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  <  ( 1  /  2 ) )  | 
						
						
							| 114 | 
							
								112 113
							 | 
							eqbrtrid | 
							⊢ ( ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  ∧  Σ 𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  <  ( 1  /  2 ) )  →  Σ 𝑚  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑚  ∈  ℙ ,  ( 1  /  𝑚 ) ,  0 )  <  ( 1  /  2 ) )  | 
						
						
							| 115 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑤  ∈  ℕ  ↦  { 𝑛  ∈  ( 1 ... ( ( 2 ↑ ( 𝑘  +  1 ) ) ↑ 2 ) )  ∣  ( 𝑤  ∈  ℙ  ∧  𝑤  ∥  𝑛 ) } )  =  ( 𝑤  ∈  ℕ  ↦  { 𝑛  ∈  ( 1 ... ( ( 2 ↑ ( 𝑘  +  1 ) ) ↑ 2 ) )  ∣  ( 𝑤  ∈  ℙ  ∧  𝑤  ∥  𝑛 ) } )  | 
						
						
							| 116 | 
							
								1 92 99 107 108 114 115
							 | 
							prmreclem5 | 
							⊢ ( ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  ∧  Σ 𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  <  ( 1  /  2 ) )  →  ( ( ( 2 ↑ ( 𝑘  +  1 ) ) ↑ 2 )  /  2 )  <  ( ( 2 ↑ 𝑘 )  ·  ( √ ‘ ( ( 2 ↑ ( 𝑘  +  1 ) ) ↑ 2 ) ) ) )  | 
						
						
							| 117 | 
							
								116
							 | 
							ex | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( Σ 𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  <  ( 1  /  2 )  →  ( ( ( 2 ↑ ( 𝑘  +  1 ) ) ↑ 2 )  /  2 )  <  ( ( 2 ↑ 𝑘 )  ·  ( √ ‘ ( ( 2 ↑ ( 𝑘  +  1 ) ) ↑ 2 ) ) ) ) )  | 
						
						
							| 118 | 
							
								
							 | 
							eqid | 
							⊢ ( ℤ≥ ‘ ( 𝑘  +  1 ) )  =  ( ℤ≥ ‘ ( 𝑘  +  1 ) )  | 
						
						
							| 119 | 
							
								94
							 | 
							nnzd | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( 𝑘  +  1 )  ∈  ℤ )  | 
						
						
							| 120 | 
							
								
							 | 
							eluznn | 
							⊢ ( ( ( 𝑘  +  1 )  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) )  →  𝑗  ∈  ℕ )  | 
						
						
							| 121 | 
							
								94 120
							 | 
							sylan | 
							⊢ ( ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) )  →  𝑗  ∈  ℕ )  | 
						
						
							| 122 | 
							
								121 41
							 | 
							syl | 
							⊢ ( ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) )  →  ( 𝐹 ‘ 𝑗 )  =  if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 ) )  | 
						
						
							| 123 | 
							
								39
							 | 
							a1i | 
							⊢ ( ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) )  →  if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  ∈  ℝ )  | 
						
						
							| 124 | 
							
								
							 | 
							simpl | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝  )  | 
						
						
							| 125 | 
							
								41
							 | 
							adantl | 
							⊢ ( ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  =  if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 ) )  | 
						
						
							| 126 | 
							
								39
							 | 
							recni | 
							⊢ if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  ∈  ℂ  | 
						
						
							| 127 | 
							
								126
							 | 
							a1i | 
							⊢ ( ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  →  if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  ∈  ℂ )  | 
						
						
							| 128 | 
							
								125 127
							 | 
							eqeltrd | 
							⊢ ( ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℂ )  | 
						
						
							| 129 | 
							
								2 94 128
							 | 
							iserex | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ↔  seq ( 𝑘  +  1 ) (  +  ,  𝐹 )  ∈  dom   ⇝  ) )  | 
						
						
							| 130 | 
							
								124 129
							 | 
							mpbid | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  seq ( 𝑘  +  1 ) (  +  ,  𝐹 )  ∈  dom   ⇝  )  | 
						
						
							| 131 | 
							
								118 119 122 123 130
							 | 
							isumrecl | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  Σ 𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  ∈  ℝ )  | 
						
						
							| 132 | 
							
								73
							 | 
							a1i | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( 1  /  2 )  ∈  ℝ )  | 
						
						
							| 133 | 
							
								
							 | 
							elfznn | 
							⊢ ( 𝑗  ∈  ( 1 ... 𝑘 )  →  𝑗  ∈  ℕ )  | 
						
						
							| 134 | 
							
								133
							 | 
							adantl | 
							⊢ ( ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  ∧  𝑗  ∈  ( 1 ... 𝑘 ) )  →  𝑗  ∈  ℕ )  | 
						
						
							| 135 | 
							
								134 41
							 | 
							syl | 
							⊢ ( ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  ∧  𝑗  ∈  ( 1 ... 𝑘 ) )  →  ( 𝐹 ‘ 𝑗 )  =  if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 ) )  | 
						
						
							| 136 | 
							
								29 2
							 | 
							eleqtrdi | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 137 | 
							
								126
							 | 
							a1i | 
							⊢ ( ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  ∧  𝑗  ∈  ( 1 ... 𝑘 ) )  →  if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  ∈  ℂ )  | 
						
						
							| 138 | 
							
								135 136 137
							 | 
							fsumser | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  Σ 𝑗  ∈  ( 1 ... 𝑘 ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  =  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 ) )  | 
						
						
							| 139 | 
							
								138 27
							 | 
							eqeltrd | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  Σ 𝑗  ∈  ( 1 ... 𝑘 ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  ∈  ℝ )  | 
						
						
							| 140 | 
							
								131 132 139
							 | 
							ltadd2d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( Σ 𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  <  ( 1  /  2 )  ↔  ( Σ 𝑗  ∈  ( 1 ... 𝑘 ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  +  Σ 𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 ) )  <  ( Σ 𝑗  ∈  ( 1 ... 𝑘 ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  +  ( 1  /  2 ) ) ) )  | 
						
						
							| 141 | 
							
								2 118 94 125 127 124
							 | 
							isumsplit | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  Σ 𝑗  ∈  ℕ if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  =  ( Σ 𝑗  ∈  ( 1 ... ( ( 𝑘  +  1 )  −  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  +  Σ 𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 ) ) )  | 
						
						
							| 142 | 
							
								
							 | 
							nncn | 
							⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℂ )  | 
						
						
							| 143 | 
							
								142
							 | 
							adantl | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℂ )  | 
						
						
							| 144 | 
							
								
							 | 
							ax-1cn | 
							⊢ 1  ∈  ℂ  | 
						
						
							| 145 | 
							
								
							 | 
							pncan | 
							⊢ ( ( 𝑘  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑘  +  1 )  −  1 )  =  𝑘 )  | 
						
						
							| 146 | 
							
								143 144 145
							 | 
							sylancl | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  +  1 )  −  1 )  =  𝑘 )  | 
						
						
							| 147 | 
							
								146
							 | 
							oveq2d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( 1 ... ( ( 𝑘  +  1 )  −  1 ) )  =  ( 1 ... 𝑘 ) )  | 
						
						
							| 148 | 
							
								147
							 | 
							sumeq1d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  Σ 𝑗  ∈  ( 1 ... ( ( 𝑘  +  1 )  −  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  =  Σ 𝑗  ∈  ( 1 ... 𝑘 ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 ) )  | 
						
						
							| 149 | 
							
								148
							 | 
							oveq1d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( Σ 𝑗  ∈  ( 1 ... ( ( 𝑘  +  1 )  −  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  +  Σ 𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 ) )  =  ( Σ 𝑗  ∈  ( 1 ... 𝑘 ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  +  Σ 𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 ) ) )  | 
						
						
							| 150 | 
							
								141 149
							 | 
							eqtrd | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  Σ 𝑗  ∈  ℕ if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  =  ( Σ 𝑗  ∈  ( 1 ... 𝑘 ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  +  Σ 𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 ) ) )  | 
						
						
							| 151 | 
							
								150
							 | 
							breq1d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( Σ 𝑗  ∈  ℕ if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  <  ( Σ 𝑗  ∈  ( 1 ... 𝑘 ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  +  ( 1  /  2 ) )  ↔  ( Σ 𝑗  ∈  ( 1 ... 𝑘 ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  +  Σ 𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 ) )  <  ( Σ 𝑗  ∈  ( 1 ... 𝑘 ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  +  ( 1  /  2 ) ) ) )  | 
						
						
							| 152 | 
							
								140 151
							 | 
							bitr4d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( Σ 𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  <  ( 1  /  2 )  ↔  Σ 𝑗  ∈  ℕ if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  <  ( Σ 𝑗  ∈  ( 1 ... 𝑘 ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  +  ( 1  /  2 ) ) ) )  | 
						
						
							| 153 | 
							
								
							 | 
							eqid | 
							⊢ seq 1 (  +  ,  𝐹 )  =  seq 1 (  +  ,  𝐹 )  | 
						
						
							| 154 | 
							
								2 153 23 42 43 54 60
							 | 
							isumsup | 
							⊢ ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   →  Σ 𝑗  ∈  ℕ if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  =  sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  ) )  | 
						
						
							| 155 | 
							
								154 67
							 | 
							eqeltrd | 
							⊢ ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   →  Σ 𝑗  ∈  ℕ if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  ∈  ℝ )  | 
						
						
							| 156 | 
							
								155
							 | 
							adantr | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  Σ 𝑗  ∈  ℕ if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  ∈  ℝ )  | 
						
						
							| 157 | 
							
								156 132 139
							 | 
							ltsubaddd | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( Σ 𝑗  ∈  ℕ if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  −  ( 1  /  2 ) )  <  Σ 𝑗  ∈  ( 1 ... 𝑘 ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  ↔  Σ 𝑗  ∈  ℕ if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  <  ( Σ 𝑗  ∈  ( 1 ... 𝑘 ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  +  ( 1  /  2 ) ) ) )  | 
						
						
							| 158 | 
							
								154
							 | 
							adantr | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  Σ 𝑗  ∈  ℕ if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  =  sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  ) )  | 
						
						
							| 159 | 
							
								158
							 | 
							oveq1d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( Σ 𝑗  ∈  ℕ if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  −  ( 1  /  2 ) )  =  ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) ) )  | 
						
						
							| 160 | 
							
								159 138
							 | 
							breq12d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( Σ 𝑗  ∈  ℕ if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  −  ( 1  /  2 ) )  <  Σ 𝑗  ∈  ( 1 ... 𝑘 ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  ↔  ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  <  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 ) ) )  | 
						
						
							| 161 | 
							
								152 157 160
							 | 
							3bitr2d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( Σ 𝑗  ∈  ( ℤ≥ ‘ ( 𝑘  +  1 ) ) if ( 𝑗  ∈  ℙ ,  ( 1  /  𝑗 ) ,  0 )  <  ( 1  /  2 )  ↔  ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  <  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 ) ) )  | 
						
						
							| 162 | 
							
								
							 | 
							2cn | 
							⊢ 2  ∈  ℂ  | 
						
						
							| 163 | 
							
								162
							 | 
							a1i | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  2  ∈  ℂ )  | 
						
						
							| 164 | 
							
								144
							 | 
							a1i | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  1  ∈  ℂ )  | 
						
						
							| 165 | 
							
								163 143 164
							 | 
							adddid | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( 2  ·  ( 𝑘  +  1 ) )  =  ( ( 2  ·  𝑘 )  +  ( 2  ·  1 ) ) )  | 
						
						
							| 166 | 
							
								94
							 | 
							nncnd | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( 𝑘  +  1 )  ∈  ℂ )  | 
						
						
							| 167 | 
							
								
							 | 
							mulcom | 
							⊢ ( ( ( 𝑘  +  1 )  ∈  ℂ  ∧  2  ∈  ℂ )  →  ( ( 𝑘  +  1 )  ·  2 )  =  ( 2  ·  ( 𝑘  +  1 ) ) )  | 
						
						
							| 168 | 
							
								166 162 167
							 | 
							sylancl | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  +  1 )  ·  2 )  =  ( 2  ·  ( 𝑘  +  1 ) ) )  | 
						
						
							| 169 | 
							
								86
							 | 
							nncnd | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( 2  ·  𝑘 )  ∈  ℂ )  | 
						
						
							| 170 | 
							
								169 164 164
							 | 
							addassd | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( ( 2  ·  𝑘 )  +  1 )  +  1 )  =  ( ( 2  ·  𝑘 )  +  ( 1  +  1 ) ) )  | 
						
						
							| 171 | 
							
								144
							 | 
							2timesi | 
							⊢ ( 2  ·  1 )  =  ( 1  +  1 )  | 
						
						
							| 172 | 
							
								171
							 | 
							oveq2i | 
							⊢ ( ( 2  ·  𝑘 )  +  ( 2  ·  1 ) )  =  ( ( 2  ·  𝑘 )  +  ( 1  +  1 ) )  | 
						
						
							| 173 | 
							
								170 172
							 | 
							eqtr4di | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( ( 2  ·  𝑘 )  +  1 )  +  1 )  =  ( ( 2  ·  𝑘 )  +  ( 2  ·  1 ) ) )  | 
						
						
							| 174 | 
							
								165 168 173
							 | 
							3eqtr4d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  +  1 )  ·  2 )  =  ( ( ( 2  ·  𝑘 )  +  1 )  +  1 ) )  | 
						
						
							| 175 | 
							
								174
							 | 
							oveq2d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( 2 ↑ ( ( 𝑘  +  1 )  ·  2 ) )  =  ( 2 ↑ ( ( ( 2  ·  𝑘 )  +  1 )  +  1 ) ) )  | 
						
						
							| 176 | 
							
								
							 | 
							2nn0 | 
							⊢ 2  ∈  ℕ0  | 
						
						
							| 177 | 
							
								176
							 | 
							a1i | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  2  ∈  ℕ0 )  | 
						
						
							| 178 | 
							
								163 177 95
							 | 
							expmuld | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( 2 ↑ ( ( 𝑘  +  1 )  ·  2 ) )  =  ( ( 2 ↑ ( 𝑘  +  1 ) ) ↑ 2 ) )  | 
						
						
							| 179 | 
							
								
							 | 
							expp1 | 
							⊢ ( ( 2  ∈  ℂ  ∧  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℕ0 )  →  ( 2 ↑ ( ( ( 2  ·  𝑘 )  +  1 )  +  1 ) )  =  ( ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  ·  2 ) )  | 
						
						
							| 180 | 
							
								162 88 179
							 | 
							sylancr | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( 2 ↑ ( ( ( 2  ·  𝑘 )  +  1 )  +  1 ) )  =  ( ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  ·  2 ) )  | 
						
						
							| 181 | 
							
								175 178 180
							 | 
							3eqtr3d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( 2 ↑ ( 𝑘  +  1 ) ) ↑ 2 )  =  ( ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  ·  2 ) )  | 
						
						
							| 182 | 
							
								181
							 | 
							oveq1d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( ( 2 ↑ ( 𝑘  +  1 ) ) ↑ 2 )  /  2 )  =  ( ( ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  ·  2 )  /  2 ) )  | 
						
						
							| 183 | 
							
								
							 | 
							expcl | 
							⊢ ( ( 2  ∈  ℂ  ∧  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℕ0 )  →  ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℂ )  | 
						
						
							| 184 | 
							
								162 88 183
							 | 
							sylancr | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℂ )  | 
						
						
							| 185 | 
							
								
							 | 
							2ne0 | 
							⊢ 2  ≠  0  | 
						
						
							| 186 | 
							
								
							 | 
							divcan4 | 
							⊢ ( ( ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  ( ( ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  ·  2 )  /  2 )  =  ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) ) )  | 
						
						
							| 187 | 
							
								162 185 186
							 | 
							mp3an23 | 
							⊢ ( ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℂ  →  ( ( ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  ·  2 )  /  2 )  =  ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) ) )  | 
						
						
							| 188 | 
							
								184 187
							 | 
							syl | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  ·  2 )  /  2 )  =  ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) ) )  | 
						
						
							| 189 | 
							
								182 188
							 | 
							eqtrd | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( ( 2 ↑ ( 𝑘  +  1 ) ) ↑ 2 )  /  2 )  =  ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) ) )  | 
						
						
							| 190 | 
							
								
							 | 
							nnnn0 | 
							⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℕ0 )  | 
						
						
							| 191 | 
							
								190
							 | 
							adantl | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ0 )  | 
						
						
							| 192 | 
							
								163 95 191
							 | 
							expaddd | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( 2 ↑ ( 𝑘  +  ( 𝑘  +  1 ) ) )  =  ( ( 2 ↑ 𝑘 )  ·  ( 2 ↑ ( 𝑘  +  1 ) ) ) )  | 
						
						
							| 193 | 
							
								143
							 | 
							2timesd | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( 2  ·  𝑘 )  =  ( 𝑘  +  𝑘 ) )  | 
						
						
							| 194 | 
							
								193
							 | 
							oveq1d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝑘 )  +  1 )  =  ( ( 𝑘  +  𝑘 )  +  1 ) )  | 
						
						
							| 195 | 
							
								143 143 164
							 | 
							addassd | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  +  𝑘 )  +  1 )  =  ( 𝑘  +  ( 𝑘  +  1 ) ) )  | 
						
						
							| 196 | 
							
								194 195
							 | 
							eqtrd | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝑘 )  +  1 )  =  ( 𝑘  +  ( 𝑘  +  1 ) ) )  | 
						
						
							| 197 | 
							
								196
							 | 
							oveq2d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  =  ( 2 ↑ ( 𝑘  +  ( 𝑘  +  1 ) ) ) )  | 
						
						
							| 198 | 
							
								97
							 | 
							nnrpd | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( 2 ↑ ( 𝑘  +  1 ) )  ∈  ℝ+ )  | 
						
						
							| 199 | 
							
								198
							 | 
							rprege0d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( 2 ↑ ( 𝑘  +  1 ) )  ∈  ℝ  ∧  0  ≤  ( 2 ↑ ( 𝑘  +  1 ) ) ) )  | 
						
						
							| 200 | 
							
								
							 | 
							sqrtsq | 
							⊢ ( ( ( 2 ↑ ( 𝑘  +  1 ) )  ∈  ℝ  ∧  0  ≤  ( 2 ↑ ( 𝑘  +  1 ) ) )  →  ( √ ‘ ( ( 2 ↑ ( 𝑘  +  1 ) ) ↑ 2 ) )  =  ( 2 ↑ ( 𝑘  +  1 ) ) )  | 
						
						
							| 201 | 
							
								199 200
							 | 
							syl | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( √ ‘ ( ( 2 ↑ ( 𝑘  +  1 ) ) ↑ 2 ) )  =  ( 2 ↑ ( 𝑘  +  1 ) ) )  | 
						
						
							| 202 | 
							
								201
							 | 
							oveq2d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( 2 ↑ 𝑘 )  ·  ( √ ‘ ( ( 2 ↑ ( 𝑘  +  1 ) ) ↑ 2 ) ) )  =  ( ( 2 ↑ 𝑘 )  ·  ( 2 ↑ ( 𝑘  +  1 ) ) ) )  | 
						
						
							| 203 | 
							
								192 197 202
							 | 
							3eqtr4rd | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( 2 ↑ 𝑘 )  ·  ( √ ‘ ( ( 2 ↑ ( 𝑘  +  1 ) ) ↑ 2 ) ) )  =  ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) ) )  | 
						
						
							| 204 | 
							
								189 203
							 | 
							breq12d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( ( ( 2 ↑ ( 𝑘  +  1 ) ) ↑ 2 )  /  2 )  <  ( ( 2 ↑ 𝑘 )  ·  ( √ ‘ ( ( 2 ↑ ( 𝑘  +  1 ) ) ↑ 2 ) ) )  ↔  ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  <  ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) ) ) )  | 
						
						
							| 205 | 
							
								117 161 204
							 | 
							3imtr3d | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ( ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  <  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 )  →  ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  <  ( 2 ↑ ( ( 2  ·  𝑘 )  +  1 ) ) ) )  | 
						
						
							| 206 | 
							
								91 205
							 | 
							mtod | 
							⊢ ( ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  𝑘  ∈  ℕ )  →  ¬  ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  <  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 ) )  | 
						
						
							| 207 | 
							
								206
							 | 
							nrexdv | 
							⊢ ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   →  ¬  ∃ 𝑘  ∈  ℕ ( sup ( ran  seq 1 (  +  ,  𝐹 ) ,  ℝ ,   <  )  −  ( 1  /  2 ) )  <  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 ) )  | 
						
						
							| 208 | 
							
								82 207
							 | 
							pm2.65i | 
							⊢ ¬  seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   |