Description: Unequal prime numbers are relatively prime. (Contributed by Mario Carneiro, 23-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | prmrp | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) → ( ( 𝑃 gcd 𝑄 ) = 1 ↔ 𝑃 ≠ 𝑄 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmz | ⊢ ( 𝑄 ∈ ℙ → 𝑄 ∈ ℤ ) | |
2 | coprm | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝑄 ↔ ( 𝑃 gcd 𝑄 ) = 1 ) ) | |
3 | 1 2 | sylan2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) → ( ¬ 𝑃 ∥ 𝑄 ↔ ( 𝑃 gcd 𝑄 ) = 1 ) ) |
4 | prmuz2 | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) | |
5 | dvdsprm | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑄 ∈ ℙ ) → ( 𝑃 ∥ 𝑄 ↔ 𝑃 = 𝑄 ) ) | |
6 | 4 5 | sylan | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) → ( 𝑃 ∥ 𝑄 ↔ 𝑃 = 𝑄 ) ) |
7 | 6 | necon3bbid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) → ( ¬ 𝑃 ∥ 𝑄 ↔ 𝑃 ≠ 𝑄 ) ) |
8 | 3 7 | bitr3d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) → ( ( 𝑃 gcd 𝑄 ) = 1 ↔ 𝑃 ≠ 𝑄 ) ) |