Step |
Hyp |
Ref |
Expression |
1 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
2 |
|
faccl |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ ) |
3 |
|
elnnuz |
⊢ ( ( ! ‘ 𝑁 ) ∈ ℕ ↔ ( ! ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 1 ) ) |
4 |
|
eluzp1p1 |
⊢ ( ( ! ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 1 ) → ( ( ! ‘ 𝑁 ) + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
5 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
6 |
5
|
fveq2i |
⊢ ( ℤ≥ ‘ 2 ) = ( ℤ≥ ‘ ( 1 + 1 ) ) |
7 |
4 6
|
eleqtrrdi |
⊢ ( ( ! ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 1 ) → ( ( ! ‘ 𝑁 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
8 |
3 7
|
sylbi |
⊢ ( ( ! ‘ 𝑁 ) ∈ ℕ → ( ( ! ‘ 𝑁 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
9 |
|
exprmfct |
⊢ ( ( ( ! ‘ 𝑁 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( ( ! ‘ 𝑁 ) + 1 ) ) |
10 |
2 8 9
|
3syl |
⊢ ( 𝑁 ∈ ℕ0 → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( ( ! ‘ 𝑁 ) + 1 ) ) |
11 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
12 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
13 |
|
eluz |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑝 ) ↔ 𝑝 ≤ 𝑁 ) ) |
14 |
11 12 13
|
syl2an |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑝 ) ↔ 𝑝 ≤ 𝑁 ) ) |
15 |
|
prmuz2 |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
16 |
|
eluz2b2 |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑝 ∈ ℕ ∧ 1 < 𝑝 ) ) |
17 |
15 16
|
sylib |
⊢ ( 𝑝 ∈ ℙ → ( 𝑝 ∈ ℕ ∧ 1 < 𝑝 ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑝 ) ) → ( 𝑝 ∈ ℕ ∧ 1 < 𝑝 ) ) |
19 |
18
|
simpld |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑝 ) ) → 𝑝 ∈ ℕ ) |
20 |
19
|
nnnn0d |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑝 ) ) → 𝑝 ∈ ℕ0 ) |
21 |
|
eluznn0 |
⊢ ( ( 𝑝 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑝 ) ) → 𝑁 ∈ ℕ0 ) |
22 |
20 21
|
sylancom |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑝 ) ) → 𝑁 ∈ ℕ0 ) |
23 |
|
nnz |
⊢ ( ( ! ‘ 𝑁 ) ∈ ℕ → ( ! ‘ 𝑁 ) ∈ ℤ ) |
24 |
22 2 23
|
3syl |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑝 ) ) → ( ! ‘ 𝑁 ) ∈ ℤ ) |
25 |
18
|
simprd |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑝 ) ) → 1 < 𝑝 ) |
26 |
|
dvdsfac |
⊢ ( ( 𝑝 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑝 ) ) → 𝑝 ∥ ( ! ‘ 𝑁 ) ) |
27 |
19 26
|
sylancom |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑝 ) ) → 𝑝 ∥ ( ! ‘ 𝑁 ) ) |
28 |
|
ndvdsp1 |
⊢ ( ( ( ! ‘ 𝑁 ) ∈ ℤ ∧ 𝑝 ∈ ℕ ∧ 1 < 𝑝 ) → ( 𝑝 ∥ ( ! ‘ 𝑁 ) → ¬ 𝑝 ∥ ( ( ! ‘ 𝑁 ) + 1 ) ) ) |
29 |
28
|
imp |
⊢ ( ( ( ( ! ‘ 𝑁 ) ∈ ℤ ∧ 𝑝 ∈ ℕ ∧ 1 < 𝑝 ) ∧ 𝑝 ∥ ( ! ‘ 𝑁 ) ) → ¬ 𝑝 ∥ ( ( ! ‘ 𝑁 ) + 1 ) ) |
30 |
24 19 25 27 29
|
syl31anc |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑝 ) ) → ¬ 𝑝 ∥ ( ( ! ‘ 𝑁 ) + 1 ) ) |
31 |
30
|
ex |
⊢ ( 𝑝 ∈ ℙ → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑝 ) → ¬ 𝑝 ∥ ( ( ! ‘ 𝑁 ) + 1 ) ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑝 ) → ¬ 𝑝 ∥ ( ( ! ‘ 𝑁 ) + 1 ) ) ) |
33 |
14 32
|
sylbird |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑝 ≤ 𝑁 → ¬ 𝑝 ∥ ( ( ! ‘ 𝑁 ) + 1 ) ) ) |
34 |
33
|
con2d |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑝 ∥ ( ( ! ‘ 𝑁 ) + 1 ) → ¬ 𝑝 ≤ 𝑁 ) ) |
35 |
34
|
ancoms |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ( ! ‘ 𝑁 ) + 1 ) → ¬ 𝑝 ≤ 𝑁 ) ) |
36 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
37 |
11
|
zred |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℝ ) |
38 |
|
ltnle |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑝 ∈ ℝ ) → ( 𝑁 < 𝑝 ↔ ¬ 𝑝 ≤ 𝑁 ) ) |
39 |
36 37 38
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑝 ∈ ℙ ) → ( 𝑁 < 𝑝 ↔ ¬ 𝑝 ≤ 𝑁 ) ) |
40 |
35 39
|
sylibrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ( ! ‘ 𝑁 ) + 1 ) → 𝑁 < 𝑝 ) ) |
41 |
40
|
reximdva |
⊢ ( 𝑁 ∈ ℕ0 → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( ( ! ‘ 𝑁 ) + 1 ) → ∃ 𝑝 ∈ ℙ 𝑁 < 𝑝 ) ) |
42 |
10 41
|
mpd |
⊢ ( 𝑁 ∈ ℕ0 → ∃ 𝑝 ∈ ℙ 𝑁 < 𝑝 ) |
43 |
1 42
|
syl |
⊢ ( 𝑁 ∈ ℕ → ∃ 𝑝 ∈ ℙ 𝑁 < 𝑝 ) |