Step |
Hyp |
Ref |
Expression |
1 |
|
prneimg |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) → { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ) ) |
2 |
1
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) → { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ) ) |
3 |
|
ioran |
⊢ ( ¬ ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ↔ ( ¬ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ¬ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ) |
4 |
|
ianor |
⊢ ( ¬ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ↔ ( ¬ 𝐴 ≠ 𝐶 ∨ ¬ 𝐴 ≠ 𝐷 ) ) |
5 |
|
nne |
⊢ ( ¬ 𝐴 ≠ 𝐶 ↔ 𝐴 = 𝐶 ) |
6 |
|
nne |
⊢ ( ¬ 𝐴 ≠ 𝐷 ↔ 𝐴 = 𝐷 ) |
7 |
5 6
|
orbi12i |
⊢ ( ( ¬ 𝐴 ≠ 𝐶 ∨ ¬ 𝐴 ≠ 𝐷 ) ↔ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) |
8 |
4 7
|
bitri |
⊢ ( ¬ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ↔ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) |
9 |
|
ianor |
⊢ ( ¬ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ↔ ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐵 ≠ 𝐷 ) ) |
10 |
|
nne |
⊢ ( ¬ 𝐵 ≠ 𝐶 ↔ 𝐵 = 𝐶 ) |
11 |
|
nne |
⊢ ( ¬ 𝐵 ≠ 𝐷 ↔ 𝐵 = 𝐷 ) |
12 |
10 11
|
orbi12i |
⊢ ( ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐵 ≠ 𝐷 ) ↔ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) |
13 |
9 12
|
bitri |
⊢ ( ¬ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ↔ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) |
14 |
8 13
|
anbi12i |
⊢ ( ( ¬ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ¬ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ↔ ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) |
15 |
3 14
|
bitri |
⊢ ( ¬ ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ↔ ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) |
16 |
|
anddi |
⊢ ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ↔ ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ∨ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) ) ) ) |
17 |
|
eqtr3 |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → 𝐴 = 𝐵 ) |
18 |
|
eqneqall |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
19 |
17 18
|
syl |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
20 |
|
preq12 |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) |
21 |
20
|
a1d |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
22 |
19 21
|
jaoi |
⊢ ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
23 |
|
preq12 |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → { 𝐴 , 𝐵 } = { 𝐷 , 𝐶 } ) |
24 |
|
prcom |
⊢ { 𝐷 , 𝐶 } = { 𝐶 , 𝐷 } |
25 |
23 24
|
eqtrdi |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) |
26 |
25
|
a1d |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
27 |
|
eqtr3 |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) → 𝐴 = 𝐵 ) |
28 |
27 18
|
syl |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
29 |
26 28
|
jaoi |
⊢ ( ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) ) → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
30 |
22 29
|
jaoi |
⊢ ( ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ∨ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) ) ) → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
31 |
30
|
com12 |
⊢ ( 𝐴 ≠ 𝐵 → ( ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ∨ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) ) ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
32 |
31
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ∨ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) ) ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
33 |
16 32
|
syl5bi |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
34 |
15 33
|
syl5bi |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ∧ 𝐴 ≠ 𝐵 ) → ( ¬ ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
35 |
34
|
necon1ad |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } → ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ) ) |
36 |
2 35
|
impbid |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ↔ { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ) ) |