Step |
Hyp |
Ref |
Expression |
1 |
|
preq12bg |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
2 |
|
orddi |
⊢ ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ↔ ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐴 = 𝐶 ∨ 𝐵 = 𝐶 ) ) ∧ ( ( 𝐵 = 𝐷 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐷 ∨ 𝐵 = 𝐶 ) ) ) ) |
3 |
|
simpll |
⊢ ( ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐴 = 𝐶 ∨ 𝐵 = 𝐶 ) ) ∧ ( ( 𝐵 = 𝐷 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐷 ∨ 𝐵 = 𝐶 ) ) ) → ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) |
4 |
|
pm1.4 |
⊢ ( ( 𝐵 = 𝐷 ∨ 𝐵 = 𝐶 ) → ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) |
5 |
4
|
ad2antll |
⊢ ( ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐴 = 𝐶 ∨ 𝐵 = 𝐶 ) ) ∧ ( ( 𝐵 = 𝐷 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐷 ∨ 𝐵 = 𝐶 ) ) ) → ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) |
6 |
3 5
|
jca |
⊢ ( ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐴 = 𝐶 ∨ 𝐵 = 𝐶 ) ) ∧ ( ( 𝐵 = 𝐷 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐷 ∨ 𝐵 = 𝐶 ) ) ) → ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) |
7 |
2 6
|
sylbi |
⊢ ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) → ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) |
8 |
1 7
|
syl6bi |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) ) |
9 |
|
ianor |
⊢ ( ¬ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ↔ ( ¬ 𝐴 ≠ 𝐶 ∨ ¬ 𝐴 ≠ 𝐷 ) ) |
10 |
|
nne |
⊢ ( ¬ 𝐴 ≠ 𝐶 ↔ 𝐴 = 𝐶 ) |
11 |
|
nne |
⊢ ( ¬ 𝐴 ≠ 𝐷 ↔ 𝐴 = 𝐷 ) |
12 |
10 11
|
orbi12i |
⊢ ( ( ¬ 𝐴 ≠ 𝐶 ∨ ¬ 𝐴 ≠ 𝐷 ) ↔ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) |
13 |
9 12
|
bitr2i |
⊢ ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ↔ ¬ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ) |
14 |
|
ianor |
⊢ ( ¬ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ↔ ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐵 ≠ 𝐷 ) ) |
15 |
|
nne |
⊢ ( ¬ 𝐵 ≠ 𝐶 ↔ 𝐵 = 𝐶 ) |
16 |
|
nne |
⊢ ( ¬ 𝐵 ≠ 𝐷 ↔ 𝐵 = 𝐷 ) |
17 |
15 16
|
orbi12i |
⊢ ( ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐵 ≠ 𝐷 ) ↔ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) |
18 |
14 17
|
bitr2i |
⊢ ( ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ↔ ¬ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) |
19 |
13 18
|
anbi12i |
⊢ ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ↔ ( ¬ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ¬ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ) |
20 |
8 19
|
syl6ib |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( ¬ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ¬ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ) ) |
21 |
|
pm4.56 |
⊢ ( ( ¬ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ¬ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ↔ ¬ ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ) |
22 |
20 21
|
syl6ib |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ¬ ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ) ) |
23 |
22
|
necon2ad |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) → { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ) ) |