| Step | Hyp | Ref | Expression | 
						
							| 1 |  | preq12bg | ⊢ ( ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝑋  ∧  𝐷  ∈  𝑌 ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  ↔  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) ) | 
						
							| 2 | 1 | necon3abid | ⊢ ( ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝑋  ∧  𝐷  ∈  𝑌 ) )  →  ( { 𝐴 ,  𝐵 }  ≠  { 𝐶 ,  𝐷 }  ↔  ¬  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) ) | 
						
							| 3 |  | ioran | ⊢ ( ¬  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) )  ↔  ( ¬  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∧  ¬  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) | 
						
							| 4 |  | ianor | ⊢ ( ¬  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ↔  ( ¬  𝐴  =  𝐶  ∨  ¬  𝐵  =  𝐷 ) ) | 
						
							| 5 |  | df-ne | ⊢ ( 𝐴  ≠  𝐶  ↔  ¬  𝐴  =  𝐶 ) | 
						
							| 6 |  | df-ne | ⊢ ( 𝐵  ≠  𝐷  ↔  ¬  𝐵  =  𝐷 ) | 
						
							| 7 | 5 6 | orbi12i | ⊢ ( ( 𝐴  ≠  𝐶  ∨  𝐵  ≠  𝐷 )  ↔  ( ¬  𝐴  =  𝐶  ∨  ¬  𝐵  =  𝐷 ) ) | 
						
							| 8 | 4 7 | bitr4i | ⊢ ( ¬  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ↔  ( 𝐴  ≠  𝐶  ∨  𝐵  ≠  𝐷 ) ) | 
						
							| 9 |  | ianor | ⊢ ( ¬  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  ↔  ( ¬  𝐴  =  𝐷  ∨  ¬  𝐵  =  𝐶 ) ) | 
						
							| 10 |  | df-ne | ⊢ ( 𝐴  ≠  𝐷  ↔  ¬  𝐴  =  𝐷 ) | 
						
							| 11 |  | df-ne | ⊢ ( 𝐵  ≠  𝐶  ↔  ¬  𝐵  =  𝐶 ) | 
						
							| 12 | 10 11 | orbi12i | ⊢ ( ( 𝐴  ≠  𝐷  ∨  𝐵  ≠  𝐶 )  ↔  ( ¬  𝐴  =  𝐷  ∨  ¬  𝐵  =  𝐶 ) ) | 
						
							| 13 | 9 12 | bitr4i | ⊢ ( ¬  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  ↔  ( 𝐴  ≠  𝐷  ∨  𝐵  ≠  𝐶 ) ) | 
						
							| 14 | 8 13 | anbi12i | ⊢ ( ( ¬  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∧  ¬  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) )  ↔  ( ( 𝐴  ≠  𝐶  ∨  𝐵  ≠  𝐷 )  ∧  ( 𝐴  ≠  𝐷  ∨  𝐵  ≠  𝐶 ) ) ) | 
						
							| 15 | 3 14 | bitri | ⊢ ( ¬  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) )  ↔  ( ( 𝐴  ≠  𝐶  ∨  𝐵  ≠  𝐷 )  ∧  ( 𝐴  ≠  𝐷  ∨  𝐵  ≠  𝐶 ) ) ) | 
						
							| 16 | 2 15 | bitrdi | ⊢ ( ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝑋  ∧  𝐷  ∈  𝑌 ) )  →  ( { 𝐴 ,  𝐵 }  ≠  { 𝐶 ,  𝐷 }  ↔  ( ( 𝐴  ≠  𝐶  ∨  𝐵  ≠  𝐷 )  ∧  ( 𝐴  ≠  𝐷  ∨  𝐵  ≠  𝐶 ) ) ) ) |