Metamath Proof Explorer


Theorem prneli

Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, using e/ . (Contributed by David A. Wheeler, 10-May-2015)

Ref Expression
Hypotheses prneli.1 𝐴𝐵
prneli.2 𝐴𝐶
Assertion prneli 𝐴 ∉ { 𝐵 , 𝐶 }

Proof

Step Hyp Ref Expression
1 prneli.1 𝐴𝐵
2 prneli.2 𝐴𝐶
3 1 2 nelpri ¬ 𝐴 ∈ { 𝐵 , 𝐶 }
4 3 nelir 𝐴 ∉ { 𝐵 , 𝐶 }