Description: A proper unordered pair is not an improper unordered pair. (Contributed by AV, 13-Jun-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | prneprprc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ ¬ 𝐶 ∈ V ) → { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prnesn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ≠ { 𝐷 } ) | |
2 | 1 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ ¬ 𝐶 ∈ V ) → { 𝐴 , 𝐵 } ≠ { 𝐷 } ) |
3 | prprc1 | ⊢ ( ¬ 𝐶 ∈ V → { 𝐶 , 𝐷 } = { 𝐷 } ) | |
4 | 3 | neeq2d | ⊢ ( ¬ 𝐶 ∈ V → ( { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ↔ { 𝐴 , 𝐵 } ≠ { 𝐷 } ) ) |
5 | 4 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ ¬ 𝐶 ∈ V ) → ( { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ↔ { 𝐴 , 𝐵 } ≠ { 𝐷 } ) ) |
6 | 2 5 | mpbird | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ ¬ 𝐶 ∈ V ) → { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ) |