Metamath Proof Explorer


Theorem prneprprc

Description: A proper unordered pair is not an improper unordered pair. (Contributed by AV, 13-Jun-2022)

Ref Expression
Assertion prneprprc ( ( ( 𝐴𝑉𝐵𝑊𝐴𝐵 ) ∧ ¬ 𝐶 ∈ V ) → { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } )

Proof

Step Hyp Ref Expression
1 prnesn ( ( 𝐴𝑉𝐵𝑊𝐴𝐵 ) → { 𝐴 , 𝐵 } ≠ { 𝐷 } )
2 1 adantr ( ( ( 𝐴𝑉𝐵𝑊𝐴𝐵 ) ∧ ¬ 𝐶 ∈ V ) → { 𝐴 , 𝐵 } ≠ { 𝐷 } )
3 prprc1 ( ¬ 𝐶 ∈ V → { 𝐶 , 𝐷 } = { 𝐷 } )
4 3 neeq2d ( ¬ 𝐶 ∈ V → ( { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ↔ { 𝐴 , 𝐵 } ≠ { 𝐷 } ) )
5 4 adantl ( ( ( 𝐴𝑉𝐵𝑊𝐴𝐵 ) ∧ ¬ 𝐶 ∈ V ) → ( { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ↔ { 𝐴 , 𝐵 } ≠ { 𝐷 } ) )
6 2 5 mpbird ( ( ( 𝐴𝑉𝐵𝑊𝐴𝐵 ) ∧ ¬ 𝐶 ∈ V ) → { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } )