Metamath Proof Explorer


Theorem prnesn

Description: A proper unordered pair is not a (proper or improper) singleton. (Contributed by AV, 13-Jun-2022)

Ref Expression
Assertion prnesn ( ( 𝐴𝑉𝐵𝑊𝐴𝐵 ) → { 𝐴 , 𝐵 } ≠ { 𝐶 } )

Proof

Step Hyp Ref Expression
1 eqtr3 ( ( 𝐴 = 𝐶𝐵 = 𝐶 ) → 𝐴 = 𝐵 )
2 1 necon3ai ( 𝐴𝐵 → ¬ ( 𝐴 = 𝐶𝐵 = 𝐶 ) )
3 2 3ad2ant3 ( ( 𝐴𝑉𝐵𝑊𝐴𝐵 ) → ¬ ( 𝐴 = 𝐶𝐵 = 𝐶 ) )
4 simp1 ( ( 𝐴𝑉𝐵𝑊𝐴𝐵 ) → 𝐴𝑉 )
5 simp2 ( ( 𝐴𝑉𝐵𝑊𝐴𝐵 ) → 𝐵𝑊 )
6 4 5 preqsnd ( ( 𝐴𝑉𝐵𝑊𝐴𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ ( 𝐴 = 𝐶𝐵 = 𝐶 ) ) )
7 6 necon3abid ( ( 𝐴𝑉𝐵𝑊𝐴𝐵 ) → ( { 𝐴 , 𝐵 } ≠ { 𝐶 } ↔ ¬ ( 𝐴 = 𝐶𝐵 = 𝐶 ) ) )
8 3 7 mpbird ( ( 𝐴𝑉𝐵𝑊𝐴𝐵 ) → { 𝐴 , 𝐵 } ≠ { 𝐶 } )