| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prnmax | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  𝐴 )  →  ∃ 𝑦  ∈  𝐴 𝐵  <Q  𝑦 ) | 
						
							| 2 |  | ltrelnq | ⊢  <Q   ⊆  ( Q  ×  Q ) | 
						
							| 3 | 2 | brel | ⊢ ( 𝐵  <Q  𝑦  →  ( 𝐵  ∈  Q  ∧  𝑦  ∈  Q ) ) | 
						
							| 4 | 3 | simprd | ⊢ ( 𝐵  <Q  𝑦  →  𝑦  ∈  Q ) | 
						
							| 5 |  | ltexnq | ⊢ ( 𝑦  ∈  Q  →  ( 𝐵  <Q  𝑦  ↔  ∃ 𝑥 ( 𝐵  +Q  𝑥 )  =  𝑦 ) ) | 
						
							| 6 | 5 | biimpcd | ⊢ ( 𝐵  <Q  𝑦  →  ( 𝑦  ∈  Q  →  ∃ 𝑥 ( 𝐵  +Q  𝑥 )  =  𝑦 ) ) | 
						
							| 7 | 4 6 | mpd | ⊢ ( 𝐵  <Q  𝑦  →  ∃ 𝑥 ( 𝐵  +Q  𝑥 )  =  𝑦 ) | 
						
							| 8 |  | eleq1a | ⊢ ( 𝑦  ∈  𝐴  →  ( ( 𝐵  +Q  𝑥 )  =  𝑦  →  ( 𝐵  +Q  𝑥 )  ∈  𝐴 ) ) | 
						
							| 9 | 8 | eximdv | ⊢ ( 𝑦  ∈  𝐴  →  ( ∃ 𝑥 ( 𝐵  +Q  𝑥 )  =  𝑦  →  ∃ 𝑥 ( 𝐵  +Q  𝑥 )  ∈  𝐴 ) ) | 
						
							| 10 | 7 9 | syl5 | ⊢ ( 𝑦  ∈  𝐴  →  ( 𝐵  <Q  𝑦  →  ∃ 𝑥 ( 𝐵  +Q  𝑥 )  ∈  𝐴 ) ) | 
						
							| 11 | 10 | rexlimiv | ⊢ ( ∃ 𝑦  ∈  𝐴 𝐵  <Q  𝑦  →  ∃ 𝑥 ( 𝐵  +Q  𝑥 )  ∈  𝐴 ) | 
						
							| 12 | 1 11 | syl | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  𝐴 )  →  ∃ 𝑥 ( 𝐵  +Q  𝑥 )  ∈  𝐴 ) |