Step |
Hyp |
Ref |
Expression |
1 |
|
prnmax |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐴 𝐵 <Q 𝑦 ) |
2 |
|
ltrelnq |
⊢ <Q ⊆ ( Q × Q ) |
3 |
2
|
brel |
⊢ ( 𝐵 <Q 𝑦 → ( 𝐵 ∈ Q ∧ 𝑦 ∈ Q ) ) |
4 |
3
|
simprd |
⊢ ( 𝐵 <Q 𝑦 → 𝑦 ∈ Q ) |
5 |
|
ltexnq |
⊢ ( 𝑦 ∈ Q → ( 𝐵 <Q 𝑦 ↔ ∃ 𝑥 ( 𝐵 +Q 𝑥 ) = 𝑦 ) ) |
6 |
5
|
biimpcd |
⊢ ( 𝐵 <Q 𝑦 → ( 𝑦 ∈ Q → ∃ 𝑥 ( 𝐵 +Q 𝑥 ) = 𝑦 ) ) |
7 |
4 6
|
mpd |
⊢ ( 𝐵 <Q 𝑦 → ∃ 𝑥 ( 𝐵 +Q 𝑥 ) = 𝑦 ) |
8 |
|
eleq1a |
⊢ ( 𝑦 ∈ 𝐴 → ( ( 𝐵 +Q 𝑥 ) = 𝑦 → ( 𝐵 +Q 𝑥 ) ∈ 𝐴 ) ) |
9 |
8
|
eximdv |
⊢ ( 𝑦 ∈ 𝐴 → ( ∃ 𝑥 ( 𝐵 +Q 𝑥 ) = 𝑦 → ∃ 𝑥 ( 𝐵 +Q 𝑥 ) ∈ 𝐴 ) ) |
10 |
7 9
|
syl5 |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝐵 <Q 𝑦 → ∃ 𝑥 ( 𝐵 +Q 𝑥 ) ∈ 𝐴 ) ) |
11 |
10
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝐵 <Q 𝑦 → ∃ 𝑥 ( 𝐵 +Q 𝑥 ) ∈ 𝐴 ) |
12 |
1 11
|
syl |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) → ∃ 𝑥 ( 𝐵 +Q 𝑥 ) ∈ 𝐴 ) |