Metamath Proof Explorer


Theorem prnzg

Description: A pair containing a set is not empty. (Contributed by FL, 19-Sep-2011) (Proof shortened by JJ, 23-Jul-2021)

Ref Expression
Assertion prnzg ( 𝐴𝑉 → { 𝐴 , 𝐵 } ≠ ∅ )

Proof

Step Hyp Ref Expression
1 prid1g ( 𝐴𝑉𝐴 ∈ { 𝐴 , 𝐵 } )
2 1 ne0d ( 𝐴𝑉 → { 𝐴 , 𝐵 } ≠ ∅ )