Metamath Proof Explorer


Theorem prod0

Description: A product over the empty set is one. (Contributed by Scott Fenton, 5-Dec-2017)

Ref Expression
Assertion prod0 𝑘 ∈ ∅ 𝐴 = 1

Proof

Step Hyp Ref Expression
1 1z 1 ∈ ℤ
2 nnuz ℕ = ( ℤ ‘ 1 )
3 id ( 1 ∈ ℤ → 1 ∈ ℤ )
4 ax-1ne0 1 ≠ 0
5 4 a1i ( 1 ∈ ℤ → 1 ≠ 0 )
6 2 prodfclim1 ( 1 ∈ ℤ → seq 1 ( · , ( ℕ × { 1 } ) ) ⇝ 1 )
7 0ss ∅ ⊆ ℕ
8 7 a1i ( 1 ∈ ℤ → ∅ ⊆ ℕ )
9 fvconst2g ( ( 1 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 1 } ) ‘ 𝑘 ) = 1 )
10 noel ¬ 𝑘 ∈ ∅
11 10 iffalsei if ( 𝑘 ∈ ∅ , 𝐴 , 1 ) = 1
12 9 11 eqtr4di ( ( 1 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 1 } ) ‘ 𝑘 ) = if ( 𝑘 ∈ ∅ , 𝐴 , 1 ) )
13 10 pm2.21i ( 𝑘 ∈ ∅ → 𝐴 ∈ ℂ )
14 13 adantl ( ( 1 ∈ ℤ ∧ 𝑘 ∈ ∅ ) → 𝐴 ∈ ℂ )
15 2 3 5 6 8 12 14 zprodn0 ( 1 ∈ ℤ → ∏ 𝑘 ∈ ∅ 𝐴 = 1 )
16 1 15 ax-mp 𝑘 ∈ ∅ 𝐴 = 1