Step |
Hyp |
Ref |
Expression |
1 |
|
1z |
⊢ 1 ∈ ℤ |
2 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
3 |
|
id |
⊢ ( 1 ∈ ℤ → 1 ∈ ℤ ) |
4 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
5 |
4
|
a1i |
⊢ ( 1 ∈ ℤ → 1 ≠ 0 ) |
6 |
2
|
prodfclim1 |
⊢ ( 1 ∈ ℤ → seq 1 ( · , ( ℕ × { 1 } ) ) ⇝ 1 ) |
7 |
|
0ss |
⊢ ∅ ⊆ ℕ |
8 |
7
|
a1i |
⊢ ( 1 ∈ ℤ → ∅ ⊆ ℕ ) |
9 |
|
fvconst2g |
⊢ ( ( 1 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 1 } ) ‘ 𝑘 ) = 1 ) |
10 |
|
noel |
⊢ ¬ 𝑘 ∈ ∅ |
11 |
10
|
iffalsei |
⊢ if ( 𝑘 ∈ ∅ , 𝐴 , 1 ) = 1 |
12 |
9 11
|
eqtr4di |
⊢ ( ( 1 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 1 } ) ‘ 𝑘 ) = if ( 𝑘 ∈ ∅ , 𝐴 , 1 ) ) |
13 |
10
|
pm2.21i |
⊢ ( 𝑘 ∈ ∅ → 𝐴 ∈ ℂ ) |
14 |
13
|
adantl |
⊢ ( ( 1 ∈ ℤ ∧ 𝑘 ∈ ∅ ) → 𝐴 ∈ ℂ ) |
15 |
2 3 5 6 8 12 14
|
zprodn0 |
⊢ ( 1 ∈ ℤ → ∏ 𝑘 ∈ ∅ 𝐴 = 1 ) |
16 |
1 15
|
ax-mp |
⊢ ∏ 𝑘 ∈ ∅ 𝐴 = 1 |