Metamath Proof Explorer


Theorem prod2id

Description: The second class argument to a product can be chosen so that it is always a set. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Assertion prod2id 𝑘𝐴 𝐵 = ∏ 𝑘𝐴 ( I ‘ 𝐵 )

Proof

Step Hyp Ref Expression
1 prodeq2ii ( ∀ 𝑘𝐴 ( I ‘ 𝐵 ) = ( I ‘ ( I ‘ 𝐵 ) ) → ∏ 𝑘𝐴 𝐵 = ∏ 𝑘𝐴 ( I ‘ 𝐵 ) )
2 fvex ( I ‘ 𝐵 ) ∈ V
3 fvi ( ( I ‘ 𝐵 ) ∈ V → ( I ‘ ( I ‘ 𝐵 ) ) = ( I ‘ 𝐵 ) )
4 2 3 ax-mp ( I ‘ ( I ‘ 𝐵 ) ) = ( I ‘ 𝐵 )
5 4 eqcomi ( I ‘ 𝐵 ) = ( I ‘ ( I ‘ 𝐵 ) )
6 5 a1i ( 𝑘𝐴 → ( I ‘ 𝐵 ) = ( I ‘ ( I ‘ 𝐵 ) ) )
7 1 6 mprg 𝑘𝐴 𝐵 = ∏ 𝑘𝐴 ( I ‘ 𝐵 )