Metamath Proof Explorer
		
		
		
		Description:  Equality inference for product.  (Contributed by Scott Fenton, 4-Dec-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | prodeq12i.1 | ⊢ 𝐴  =  𝐵 | 
					
						|  |  | prodeq12i.2 | ⊢ ( 𝑘  ∈  𝐴  →  𝐶  =  𝐷 ) | 
				
					|  | Assertion | prodeq12i | ⊢  ∏ 𝑘  ∈  𝐴 𝐶  =  ∏ 𝑘  ∈  𝐵 𝐷 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prodeq12i.1 | ⊢ 𝐴  =  𝐵 | 
						
							| 2 |  | prodeq12i.2 | ⊢ ( 𝑘  ∈  𝐴  →  𝐶  =  𝐷 ) | 
						
							| 3 | 2 | prodeq2i | ⊢ ∏ 𝑘  ∈  𝐴 𝐶  =  ∏ 𝑘  ∈  𝐴 𝐷 | 
						
							| 4 | 1 | prodeq1i | ⊢ ∏ 𝑘  ∈  𝐴 𝐷  =  ∏ 𝑘  ∈  𝐵 𝐷 | 
						
							| 5 | 3 4 | eqtri | ⊢ ∏ 𝑘  ∈  𝐴 𝐶  =  ∏ 𝑘  ∈  𝐵 𝐷 |