Metamath Proof Explorer
Description: Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017)
|
|
Ref |
Expression |
|
Hypotheses |
prodeq12i.1 |
⊢ 𝐴 = 𝐵 |
|
|
prodeq12i.2 |
⊢ ( 𝑘 ∈ 𝐴 → 𝐶 = 𝐷 ) |
|
Assertion |
prodeq12i |
⊢ ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐷 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
prodeq12i.1 |
⊢ 𝐴 = 𝐵 |
2 |
|
prodeq12i.2 |
⊢ ( 𝑘 ∈ 𝐴 → 𝐶 = 𝐷 ) |
3 |
2
|
prodeq2i |
⊢ ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐴 𝐷 |
4 |
1
|
prodeq1i |
⊢ ∏ 𝑘 ∈ 𝐴 𝐷 = ∏ 𝑘 ∈ 𝐵 𝐷 |
5 |
3 4
|
eqtri |
⊢ ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐷 |