Metamath Proof Explorer


Theorem prodeq12i

Description: Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses prodeq12i.1 𝐴 = 𝐵
prodeq12i.2 ( 𝑘𝐴𝐶 = 𝐷 )
Assertion prodeq12i 𝑘𝐴 𝐶 = ∏ 𝑘𝐵 𝐷

Proof

Step Hyp Ref Expression
1 prodeq12i.1 𝐴 = 𝐵
2 prodeq12i.2 ( 𝑘𝐴𝐶 = 𝐷 )
3 2 prodeq2i 𝑘𝐴 𝐶 = ∏ 𝑘𝐴 𝐷
4 1 prodeq1i 𝑘𝐴 𝐷 = ∏ 𝑘𝐵 𝐷
5 3 4 eqtri 𝑘𝐴 𝐶 = ∏ 𝑘𝐵 𝐷