Description: Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | prodeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
Assertion | prodeq1d | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | prodeq1 | ⊢ ( 𝐴 = 𝐵 → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) |