Description: Equality theorem for product. (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prodeq2 | ⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 = 𝐶 → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐶 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝐵 = 𝐶 → ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ) | |
| 2 | 1 | ralimi | ⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 = 𝐶 → ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ) | 
| 3 | prodeq2ii | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐶 ) | |
| 4 | 2 3 | syl | ⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 = 𝐶 → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐶 ) |