| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							prodeq2sdv.1 | 
							⊢ ( 𝜑  →  𝐵  =  𝐶 )  | 
						
						
							| 2 | 
							
								1
							 | 
							ifeq1d | 
							⊢ ( 𝜑  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 )  =  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							mpteq2dv | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) )  =  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							seqeq3d | 
							⊢ ( 𝜑  →  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  =  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							breq1d | 
							⊢ ( 𝜑  →  ( seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦  ↔  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							anbi2d | 
							⊢ ( 𝜑  →  ( ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ↔  ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							exbidv | 
							⊢ ( 𝜑  →  ( ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ↔  ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							rexbidv | 
							⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ↔  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 ) ) )  | 
						
						
							| 9 | 
							
								3
							 | 
							seqeq3d | 
							⊢ ( 𝜑  →  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  =  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							breq1d | 
							⊢ ( 𝜑  →  ( seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥  ↔  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							3anbi23d | 
							⊢ ( 𝜑  →  ( ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ↔  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							rexbidv | 
							⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ↔  ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 ) ) )  | 
						
						
							| 13 | 
							
								1
							 | 
							csbeq2dv | 
							⊢ ( 𝜑  →  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵  =  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 )  | 
						
						
							| 14 | 
							
								13
							 | 
							mpteq2dv | 
							⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 )  =  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							seqeq3d | 
							⊢ ( 𝜑  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) )  =  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							fveq1d | 
							⊢ ( 𝜑  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 )  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							eqeq2d | 
							⊢ ( 𝜑  →  ( 𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 )  ↔  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							anbi2d | 
							⊢ ( 𝜑  →  ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) )  ↔  ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							exbidv | 
							⊢ ( 𝜑  →  ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) )  ↔  ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							rexbidv | 
							⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) )  ↔  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) )  | 
						
						
							| 21 | 
							
								12 20
							 | 
							orbi12d | 
							⊢ ( 𝜑  →  ( ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) )  ↔  ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							iotabidv | 
							⊢ ( 𝜑  →  ( ℩ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) )  =  ( ℩ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							df-prod | 
							⊢ ∏ 𝑘  ∈  𝐴 𝐵  =  ( ℩ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							df-prod | 
							⊢ ∏ 𝑘  ∈  𝐴 𝐶  =  ( ℩ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) )  | 
						
						
							| 25 | 
							
								22 23 24
							 | 
							3eqtr4g | 
							⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ∏ 𝑘  ∈  𝐴 𝐶 )  |