| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ℤ  =  ℤ | 
						
							| 2 |  | ifeq1 | ⊢ ( 𝐵  =  𝐶  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 )  =  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) | 
						
							| 3 | 2 | alimi | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  ∀ 𝑘 if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 )  =  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) | 
						
							| 4 |  | alral | ⊢ ( ∀ 𝑘 if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 )  =  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 )  →  ∀ 𝑘  ∈  ℤ if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 )  =  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  ∀ 𝑘  ∈  ℤ if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 )  =  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) | 
						
							| 6 |  | mpteq12 | ⊢ ( ( ℤ  =  ℤ  ∧  ∀ 𝑘  ∈  ℤ if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 )  =  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) )  →  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) )  =  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) ) | 
						
							| 7 | 1 5 6 | sylancr | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) )  =  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) ) | 
						
							| 8 | 7 | seqeq3d | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  =  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) ) ) | 
						
							| 9 | 8 | breq1d | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  ( seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦  ↔  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 ) ) | 
						
							| 10 | 9 | anbi2d | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  ( ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ↔  ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 ) ) ) | 
						
							| 11 | 10 | exbidv | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  ( ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ↔  ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 ) ) ) | 
						
							| 12 | 11 | rexbidv | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  ( ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ↔  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 ) ) ) | 
						
							| 13 | 7 | seqeq3d | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  =  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) ) ) | 
						
							| 14 | 13 | breq1d | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  ( seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥  ↔  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 ) ) | 
						
							| 15 | 12 14 | 3anbi23d | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  ( ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ↔  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 ) ) ) | 
						
							| 16 | 15 | rexbidv | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ↔  ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 ) ) ) | 
						
							| 17 |  | csbeq2 | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵  =  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) | 
						
							| 18 | 17 | mpteq2dv | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 )  =  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) | 
						
							| 19 | 18 | seqeq3d | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) )  =  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ) | 
						
							| 20 | 19 | fveq1d | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 )  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) | 
						
							| 21 | 20 | eqeq2d | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  ( 𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 )  ↔  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) | 
						
							| 22 | 21 | anbi2d | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) )  ↔  ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) | 
						
							| 23 | 22 | exbidv | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) )  ↔  ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) | 
						
							| 24 | 23 | rexbidv | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  ( ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) )  ↔  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) | 
						
							| 25 | 16 24 | orbi12d | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  ( ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) )  ↔  ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) ) | 
						
							| 26 | 25 | iotabidv | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  ( ℩ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) )  =  ( ℩ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) ) | 
						
							| 27 |  | df-prod | ⊢ ∏ 𝑘  ∈  𝐴 𝐵  =  ( ℩ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) | 
						
							| 28 |  | df-prod | ⊢ ∏ 𝑘  ∈  𝐴 𝐶  =  ( ℩ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) | 
						
							| 29 | 26 27 28 | 3eqtr4g | ⊢ ( ∀ 𝑘 𝐵  =  𝐶  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ∏ 𝑘  ∈  𝐴 𝐶 ) |