Metamath Proof Explorer


Theorem prodf

Description: An infinite product of complex terms is a function from an upper set of integers to CC . (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses prodf.1 𝑍 = ( ℤ𝑀 )
prodf.2 ( 𝜑𝑀 ∈ ℤ )
prodf.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
Assertion prodf ( 𝜑 → seq 𝑀 ( · , 𝐹 ) : 𝑍 ⟶ ℂ )

Proof

Step Hyp Ref Expression
1 prodf.1 𝑍 = ( ℤ𝑀 )
2 prodf.2 ( 𝜑𝑀 ∈ ℤ )
3 prodf.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
4 mulcl ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 · 𝑥 ) ∈ ℂ )
5 4 adantl ( ( 𝜑 ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑘 · 𝑥 ) ∈ ℂ )
6 1 2 3 5 seqf ( 𝜑 → seq 𝑀 ( · , 𝐹 ) : 𝑍 ⟶ ℂ )