Description: An infinite product of complex terms is a function from an upper set of integers to CC . (Contributed by Scott Fenton, 4-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prodf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
prodf.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
prodf.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
Assertion | prodf | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) : 𝑍 ⟶ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
2 | prodf.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
3 | prodf.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
4 | mulcl | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 · 𝑥 ) ∈ ℂ ) | |
5 | 4 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑘 · 𝑥 ) ∈ ℂ ) |
6 | 1 2 3 5 | seqf | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) : 𝑍 ⟶ ℂ ) |