Description: An infinite product of complex terms is a function from an upper set of integers to CC . (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| prodf.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| prodf.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| Assertion | prodf | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) : 𝑍 ⟶ ℂ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prodf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | prodf.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | prodf.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 4 | mulcl | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 · 𝑥 ) ∈ ℂ ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑘 · 𝑥 ) ∈ ℂ ) | 
| 6 | 1 2 3 5 | seqf | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) : 𝑍 ⟶ ℂ ) |