| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prodf1.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | 1t1e1 | ⊢ ( 1  ·  1 )  =  1 | 
						
							| 3 | 2 | a1i | ⊢ ( 𝑁  ∈  𝑍  →  ( 1  ·  1 )  =  1 ) | 
						
							| 4 | 1 | eleq2i | ⊢ ( 𝑁  ∈  𝑍  ↔  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 5 | 4 | biimpi | ⊢ ( 𝑁  ∈  𝑍  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 6 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 7 |  | elfzuz | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑁 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 8 | 7 1 | eleqtrrdi | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑁 )  →  𝑘  ∈  𝑍 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑁  ∈  𝑍  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 10 |  | fvconst2g | ⊢ ( ( 1  ∈  ℂ  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑍  ×  { 1 } ) ‘ 𝑘 )  =  1 ) | 
						
							| 11 | 6 9 10 | sylancr | ⊢ ( ( 𝑁  ∈  𝑍  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( 𝑍  ×  { 1 } ) ‘ 𝑘 )  =  1 ) | 
						
							| 12 | 3 5 11 | seqid3 | ⊢ ( 𝑁  ∈  𝑍  →  ( seq 𝑀 (  ·  ,  ( 𝑍  ×  { 1 } ) ) ‘ 𝑁 )  =  1 ) |