Metamath Proof Explorer


Theorem prodfc

Description: A lemma to facilitate conversions from the function form to the class-variable form of a product. (Contributed by Scott Fenton, 7-Dec-2017)

Ref Expression
Assertion prodfc 𝑗𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = ∏ 𝑘𝐴 𝐵

Proof

Step Hyp Ref Expression
1 eqid ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐵 )
2 1 fvmpt2i ( 𝑘𝐴 → ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 ) = ( I ‘ 𝐵 ) )
3 2 prodeq2i 𝑘𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 ) = ∏ 𝑘𝐴 ( I ‘ 𝐵 )
4 nffvmpt1 𝑘 ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 )
5 nfcv 𝑗 ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 )
6 fveq2 ( 𝑗 = 𝑘 → ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 ) )
7 4 5 6 cbvprodi 𝑗𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = ∏ 𝑘𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 )
8 prod2id 𝑘𝐴 𝐵 = ∏ 𝑘𝐴 ( I ‘ 𝐵 )
9 3 7 8 3eqtr4i 𝑗𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = ∏ 𝑘𝐴 𝐵