Description: The constant one product converges to one. (Contributed by Scott Fenton, 5-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | prodf1.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
Assertion | prodfclim1 | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( · , ( 𝑍 × { 1 } ) ) ⇝ 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodf1.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
2 | 1 | prodf1f | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( · , ( 𝑍 × { 1 } ) ) = ( 𝑍 × { 1 } ) ) |
3 | ax-1cn | ⊢ 1 ∈ ℂ | |
4 | 1 | eqimss2i | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ 𝑍 |
5 | 1 | fvexi | ⊢ 𝑍 ∈ V |
6 | 4 5 | climconst2 | ⊢ ( ( 1 ∈ ℂ ∧ 𝑀 ∈ ℤ ) → ( 𝑍 × { 1 } ) ⇝ 1 ) |
7 | 3 6 | mpan | ⊢ ( 𝑀 ∈ ℤ → ( 𝑍 × { 1 } ) ⇝ 1 ) |
8 | 2 7 | eqbrtrd | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( · , ( 𝑍 × { 1 } ) ) ⇝ 1 ) |