Metamath Proof Explorer


Theorem prodfclim1

Description: The constant one product converges to one. (Contributed by Scott Fenton, 5-Dec-2017)

Ref Expression
Hypothesis prodf1.1 𝑍 = ( ℤ𝑀 )
Assertion prodfclim1 ( 𝑀 ∈ ℤ → seq 𝑀 ( · , ( 𝑍 × { 1 } ) ) ⇝ 1 )

Proof

Step Hyp Ref Expression
1 prodf1.1 𝑍 = ( ℤ𝑀 )
2 1 prodf1f ( 𝑀 ∈ ℤ → seq 𝑀 ( · , ( 𝑍 × { 1 } ) ) = ( 𝑍 × { 1 } ) )
3 ax-1cn 1 ∈ ℂ
4 1 eqimss2i ( ℤ𝑀 ) ⊆ 𝑍
5 1 fvexi 𝑍 ∈ V
6 4 5 climconst2 ( ( 1 ∈ ℂ ∧ 𝑀 ∈ ℤ ) → ( 𝑍 × { 1 } ) ⇝ 1 )
7 3 6 mpan ( 𝑀 ∈ ℤ → ( 𝑍 × { 1 } ) ⇝ 1 )
8 2 7 eqbrtrd ( 𝑀 ∈ ℤ → seq 𝑀 ( · , ( 𝑍 × { 1 } ) ) ⇝ 1 )