| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prodfmul.1 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 2 |  | prodfmul.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 3 |  | prodfmul.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 4 |  | prodfmul.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐻 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 )  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 5 |  | mulcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  ·  𝑦 )  ∈  ℂ ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ℂ ) | 
						
							| 7 |  | mulcom | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  ·  𝑦 )  =  ( 𝑦  ·  𝑥 ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ ) )  →  ( 𝑥  ·  𝑦 )  =  ( 𝑦  ·  𝑥 ) ) | 
						
							| 9 |  | mulass | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑥  ·  𝑦 )  ·  𝑧 )  =  ( 𝑥  ·  ( 𝑦  ·  𝑧 ) ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ ) )  →  ( ( 𝑥  ·  𝑦 )  ·  𝑧 )  =  ( 𝑥  ·  ( 𝑦  ·  𝑧 ) ) ) | 
						
							| 11 | 6 8 10 1 2 3 4 | seqcaopr | ⊢ ( 𝜑  →  ( seq 𝑀 (  ·  ,  𝐻 ) ‘ 𝑁 )  =  ( ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑁 )  ·  ( seq 𝑀 (  ·  ,  𝐺 ) ‘ 𝑁 ) ) ) |