| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							prodfn0.1 | 
							⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							prodfn0.2 | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  | 
						
						
							| 3 | 
							
								
							 | 
							prodfn0.3 | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑘 )  ≠  0 )  | 
						
						
							| 4 | 
							
								
							 | 
							eluzfz2 | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑁  ∈  ( 𝑀 ... 𝑁 ) )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑁  ∈  ( 𝑀 ... 𝑁 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑚  =  𝑀  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑚 )  =  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑀 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							neeq1d | 
							⊢ ( 𝑚  =  𝑀  →  ( ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑚 )  ≠  0  ↔  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑀 )  ≠  0 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							imbi2d | 
							⊢ ( 𝑚  =  𝑀  →  ( ( 𝜑  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑚 )  ≠  0 )  ↔  ( 𝜑  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑀 )  ≠  0 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑚  =  𝑛  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑚 )  =  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							neeq1d | 
							⊢ ( 𝑚  =  𝑛  →  ( ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑚 )  ≠  0  ↔  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  ≠  0 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							imbi2d | 
							⊢ ( 𝑚  =  𝑛  →  ( ( 𝜑  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑚 )  ≠  0 )  ↔  ( 𝜑  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  ≠  0 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑚 )  =  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							neeq1d | 
							⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑚 )  ≠  0  ↔  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  ≠  0 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							imbi2d | 
							⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( 𝜑  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑚 )  ≠  0 )  ↔  ( 𝜑  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  ≠  0 ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑚  =  𝑁  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑚 )  =  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑁 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							neeq1d | 
							⊢ ( 𝑚  =  𝑁  →  ( ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑚 )  ≠  0  ↔  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑁 )  ≠  0 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							imbi2d | 
							⊢ ( 𝑚  =  𝑁  →  ( ( 𝜑  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑚 )  ≠  0 )  ↔  ( 𝜑  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑁 )  ≠  0 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							eluzfz1 | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ( 𝑀 ... 𝑁 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							elfzelz | 
							⊢ ( 𝑀  ∈  ( 𝑀 ... 𝑁 )  →  𝑀  ∈  ℤ )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑀  ∈  ℤ )  | 
						
						
							| 21 | 
							
								
							 | 
							seq1 | 
							⊢ ( 𝑀  ∈  ℤ  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑀 )  =  ( 𝐹 ‘ 𝑀 ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 𝑀 ... 𝑁 ) )  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑀 )  =  ( 𝐹 ‘ 𝑀 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑀  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑀 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							neeq1d | 
							⊢ ( 𝑘  =  𝑀  →  ( ( 𝐹 ‘ 𝑘 )  ≠  0  ↔  ( 𝐹 ‘ 𝑀 )  ≠  0 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							imbi2d | 
							⊢ ( 𝑘  =  𝑀  →  ( ( 𝜑  →  ( 𝐹 ‘ 𝑘 )  ≠  0 )  ↔  ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ≠  0 ) ) )  | 
						
						
							| 26 | 
							
								3
							 | 
							expcom | 
							⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝜑  →  ( 𝐹 ‘ 𝑘 )  ≠  0 ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							vtoclga | 
							⊢ ( 𝑀  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ≠  0 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							impcom | 
							⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑀 )  ≠  0 )  | 
						
						
							| 29 | 
							
								22 28
							 | 
							eqnetrd | 
							⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 𝑀 ... 𝑁 ) )  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑀 )  ≠  0 )  | 
						
						
							| 30 | 
							
								29
							 | 
							expcom | 
							⊢ ( 𝑀  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝜑  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑀 )  ≠  0 ) )  | 
						
						
							| 31 | 
							
								18 30
							 | 
							syl | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝜑  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑀 )  ≠  0 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							elfzouz | 
							⊢ ( 𝑛  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 )  ∧  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  ≠  0 )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							seqp1 | 
							⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  ·  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 )  ∧  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  ≠  0 )  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  ·  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							elfzofz | 
							⊢ ( 𝑛  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑛  ∈  ( 𝑀 ... 𝑁 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							elfzuz | 
							⊢ ( 𝑛  ∈  ( 𝑀 ... 𝑁 )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							elfzuz3 | 
							⊢ ( 𝑛  ∈  ( 𝑀 ... 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑛 ) )  | 
						
						
							| 40 | 
							
								
							 | 
							fzss2 | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑛 )  →  ( 𝑀 ... 𝑛 )  ⊆  ( 𝑀 ... 𝑁 ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							syl | 
							⊢ ( 𝑛  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝑀 ... 𝑛 )  ⊆  ( 𝑀 ... 𝑁 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							sselda | 
							⊢ ( ( 𝑛  ∈  ( 𝑀 ... 𝑁 )  ∧  𝑘  ∈  ( 𝑀 ... 𝑛 ) )  →  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  | 
						
						
							| 43 | 
							
								42 2
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 𝑀 ... 𝑁 )  ∧  𝑘  ∈  ( 𝑀 ... 𝑛 ) ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  | 
						
						
							| 44 | 
							
								43
							 | 
							anassrs | 
							⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ... 𝑁 ) )  ∧  𝑘  ∈  ( 𝑀 ... 𝑛 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  | 
						
						
							| 45 | 
							
								
							 | 
							mulcl | 
							⊢ ( ( 𝑘  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( 𝑘  ·  𝑥 )  ∈  ℂ )  | 
						
						
							| 46 | 
							
								45
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ... 𝑁 ) )  ∧  ( 𝑘  ∈  ℂ  ∧  𝑥  ∈  ℂ ) )  →  ( 𝑘  ·  𝑥 )  ∈  ℂ )  | 
						
						
							| 47 | 
							
								38 44 46
							 | 
							seqcl | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ... 𝑁 ) )  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  ∈  ℂ )  | 
						
						
							| 48 | 
							
								36 47
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  ∈  ℂ )  | 
						
						
							| 49 | 
							
								48
							 | 
							3adant3 | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 )  ∧  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  ≠  0 )  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  ∈  ℂ )  | 
						
						
							| 50 | 
							
								
							 | 
							fzofzp1 | 
							⊢ ( 𝑛  ∈  ( 𝑀 ..^ 𝑁 )  →  ( 𝑛  +  1 )  ∈  ( 𝑀 ... 𝑁 ) )  | 
						
						
							| 51 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							eleq1d | 
							⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ↔  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℂ ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							imbi2d | 
							⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( ( 𝜑  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  ↔  ( 𝜑  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℂ ) ) )  | 
						
						
							| 54 | 
							
								2
							 | 
							expcom | 
							⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝜑  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  | 
						
						
							| 55 | 
							
								53 54
							 | 
							vtoclga | 
							⊢ ( ( 𝑛  +  1 )  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝜑  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℂ ) )  | 
						
						
							| 56 | 
							
								50 55
							 | 
							syl | 
							⊢ ( 𝑛  ∈  ( 𝑀 ..^ 𝑁 )  →  ( 𝜑  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℂ ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							impcom | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℂ )  | 
						
						
							| 58 | 
							
								57
							 | 
							3adant3 | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 )  ∧  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  ≠  0 )  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℂ )  | 
						
						
							| 59 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 )  ∧  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  ≠  0 )  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  ≠  0 )  | 
						
						
							| 60 | 
							
								51
							 | 
							neeq1d | 
							⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( ( 𝐹 ‘ 𝑘 )  ≠  0  ↔  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ≠  0 ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							imbi2d | 
							⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( ( 𝜑  →  ( 𝐹 ‘ 𝑘 )  ≠  0 )  ↔  ( 𝜑  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ≠  0 ) ) )  | 
						
						
							| 62 | 
							
								61 26
							 | 
							vtoclga | 
							⊢ ( ( 𝑛  +  1 )  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝜑  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ≠  0 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							impcom | 
							⊢ ( ( 𝜑  ∧  ( 𝑛  +  1 )  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ≠  0 )  | 
						
						
							| 64 | 
							
								50 63
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ≠  0 )  | 
						
						
							| 65 | 
							
								64
							 | 
							3adant3 | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 )  ∧  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  ≠  0 )  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ≠  0 )  | 
						
						
							| 66 | 
							
								49 58 59 65
							 | 
							mulne0d | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 )  ∧  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  ≠  0 )  →  ( ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  ·  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ≠  0 )  | 
						
						
							| 67 | 
							
								35 66
							 | 
							eqnetrd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 )  ∧  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  ≠  0 )  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  ≠  0 )  | 
						
						
							| 68 | 
							
								67
							 | 
							3exp | 
							⊢ ( 𝜑  →  ( 𝑛  ∈  ( 𝑀 ..^ 𝑁 )  →  ( ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  ≠  0  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  ≠  0 ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							com12 | 
							⊢ ( 𝑛  ∈  ( 𝑀 ..^ 𝑁 )  →  ( 𝜑  →  ( ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  ≠  0  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  ≠  0 ) ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							a2d | 
							⊢ ( 𝑛  ∈  ( 𝑀 ..^ 𝑁 )  →  ( ( 𝜑  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  ≠  0 )  →  ( 𝜑  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  ≠  0 ) ) )  | 
						
						
							| 71 | 
							
								8 11 14 17 31 70
							 | 
							fzind2 | 
							⊢ ( 𝑁  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝜑  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑁 )  ≠  0 ) )  | 
						
						
							| 72 | 
							
								5 71
							 | 
							mpcom | 
							⊢ ( 𝜑  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑁 )  ≠  0 )  |