Step |
Hyp |
Ref |
Expression |
1 |
|
prodfn0.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
prodfn0.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
3 |
|
prodfn0.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ≠ 0 ) |
4 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑀 ) ) |
7 |
6
|
neeq1d |
⊢ ( 𝑚 = 𝑀 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) ≠ 0 ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑀 ) ≠ 0 ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) ≠ 0 ) ↔ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑀 ) ≠ 0 ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) |
10 |
9
|
neeq1d |
⊢ ( 𝑚 = 𝑛 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) ≠ 0 ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ≠ 0 ) ) |
11 |
10
|
imbi2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) ≠ 0 ) ↔ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ≠ 0 ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) |
13 |
12
|
neeq1d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) ≠ 0 ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ≠ 0 ) ) |
14 |
13
|
imbi2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) ≠ 0 ) ↔ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ≠ 0 ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑚 = 𝑁 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) |
16 |
15
|
neeq1d |
⊢ ( 𝑚 = 𝑁 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) ≠ 0 ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ≠ 0 ) ) |
17 |
16
|
imbi2d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) ≠ 0 ) ↔ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ≠ 0 ) ) ) |
18 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
19 |
|
elfzelz |
⊢ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → 𝑀 ∈ ℤ ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ∈ ℤ ) |
21 |
|
seq1 |
⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
22 |
20 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
23 |
|
fveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) |
24 |
23
|
neeq1d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 ‘ 𝑘 ) ≠ 0 ↔ ( 𝐹 ‘ 𝑀 ) ≠ 0 ) ) |
25 |
24
|
imbi2d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ≠ 0 ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ≠ 0 ) ) ) |
26 |
3
|
expcom |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ≠ 0 ) ) |
27 |
25 26
|
vtoclga |
⊢ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ≠ 0 ) ) |
28 |
27
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑀 ) ≠ 0 ) |
29 |
22 28
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑀 ) ≠ 0 ) |
30 |
29
|
expcom |
⊢ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑀 ) ≠ 0 ) ) |
31 |
18 30
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑀 ) ≠ 0 ) ) |
32 |
|
elfzouz |
⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
33 |
32
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ≠ 0 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
34 |
|
seqp1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
35 |
33 34
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ≠ 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
36 |
|
elfzofz |
⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
37 |
|
elfzuz |
⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
39 |
|
elfzuz3 |
⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
40 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) → ( 𝑀 ... 𝑛 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
41 |
39 40
|
syl |
⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑀 ... 𝑛 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
42 |
41
|
sselda |
⊢ ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
43 |
42 2
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
44 |
43
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
45 |
|
mulcl |
⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 · 𝑥 ) ∈ ℂ ) |
46 |
45
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑘 · 𝑥 ) ∈ ℂ ) |
47 |
38 44 46
|
seqcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ) |
48 |
36 47
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ) |
49 |
48
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ≠ 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ) |
50 |
|
fzofzp1 |
⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
51 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
52 |
51
|
eleq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) ) |
53 |
52
|
imbi2d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ↔ ( 𝜑 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) ) ) |
54 |
2
|
expcom |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) |
55 |
53 54
|
vtoclga |
⊢ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) ) |
56 |
50 55
|
syl |
⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) ) |
57 |
56
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
58 |
57
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ≠ 0 ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
59 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ≠ 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ≠ 0 ) |
60 |
51
|
neeq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ≠ 0 ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≠ 0 ) ) |
61 |
60
|
imbi2d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ≠ 0 ) ↔ ( 𝜑 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≠ 0 ) ) ) |
62 |
61 26
|
vtoclga |
⊢ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≠ 0 ) ) |
63 |
62
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≠ 0 ) |
64 |
50 63
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≠ 0 ) |
65 |
64
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ≠ 0 ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≠ 0 ) |
66 |
49 58 59 65
|
mulne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ≠ 0 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≠ 0 ) |
67 |
35 66
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ≠ 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ≠ 0 ) |
68 |
67
|
3exp |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ≠ 0 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ≠ 0 ) ) ) |
69 |
68
|
com12 |
⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝜑 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ≠ 0 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ≠ 0 ) ) ) |
70 |
69
|
a2d |
⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ≠ 0 ) → ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ≠ 0 ) ) ) |
71 |
8 11 14 17 31 70
|
fzind2 |
⊢ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ≠ 0 ) ) |
72 |
5 71
|
mpcom |
⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ≠ 0 ) |