| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prodfzo03.1 |
⊢ ( 𝑘 = 0 → 𝐷 = 𝐴 ) |
| 2 |
|
prodfzo03.2 |
⊢ ( 𝑘 = 1 → 𝐷 = 𝐵 ) |
| 3 |
|
prodfzo03.3 |
⊢ ( 𝑘 = 2 → 𝐷 = 𝐶 ) |
| 4 |
|
prodfzo03.a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 3 ) ) → 𝐷 ∈ ℂ ) |
| 5 |
|
fzodisjsn |
⊢ ( ( 0 ..^ 2 ) ∩ { 2 } ) = ∅ |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → ( ( 0 ..^ 2 ) ∩ { 2 } ) = ∅ ) |
| 7 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
| 8 |
7
|
oveq2i |
⊢ ( 0 ..^ ( 2 + 1 ) ) = ( 0 ..^ 3 ) |
| 9 |
|
2eluzge0 |
⊢ 2 ∈ ( ℤ≥ ‘ 0 ) |
| 10 |
|
fzosplitsn |
⊢ ( 2 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ..^ ( 2 + 1 ) ) = ( ( 0 ..^ 2 ) ∪ { 2 } ) ) |
| 11 |
9 10
|
ax-mp |
⊢ ( 0 ..^ ( 2 + 1 ) ) = ( ( 0 ..^ 2 ) ∪ { 2 } ) |
| 12 |
8 11
|
eqtr3i |
⊢ ( 0 ..^ 3 ) = ( ( 0 ..^ 2 ) ∪ { 2 } ) |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 3 ) = ( ( 0 ..^ 2 ) ∪ { 2 } ) ) |
| 14 |
|
fzofi |
⊢ ( 0 ..^ 3 ) ∈ Fin |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 3 ) ∈ Fin ) |
| 16 |
6 13 15 4
|
fprodsplit |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 0 ..^ 3 ) 𝐷 = ( ∏ 𝑘 ∈ ( 0 ..^ 2 ) 𝐷 · ∏ 𝑘 ∈ { 2 } 𝐷 ) ) |
| 17 |
|
0ne1 |
⊢ 0 ≠ 1 |
| 18 |
|
disjsn2 |
⊢ ( 0 ≠ 1 → ( { 0 } ∩ { 1 } ) = ∅ ) |
| 19 |
17 18
|
mp1i |
⊢ ( 𝜑 → ( { 0 } ∩ { 1 } ) = ∅ ) |
| 20 |
|
fzo0to2pr |
⊢ ( 0 ..^ 2 ) = { 0 , 1 } |
| 21 |
|
df-pr |
⊢ { 0 , 1 } = ( { 0 } ∪ { 1 } ) |
| 22 |
20 21
|
eqtri |
⊢ ( 0 ..^ 2 ) = ( { 0 } ∪ { 1 } ) |
| 23 |
22
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 2 ) = ( { 0 } ∪ { 1 } ) ) |
| 24 |
|
fzofi |
⊢ ( 0 ..^ 2 ) ∈ Fin |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 2 ) ∈ Fin ) |
| 26 |
|
2z |
⊢ 2 ∈ ℤ |
| 27 |
|
3z |
⊢ 3 ∈ ℤ |
| 28 |
|
2re |
⊢ 2 ∈ ℝ |
| 29 |
|
3re |
⊢ 3 ∈ ℝ |
| 30 |
|
2lt3 |
⊢ 2 < 3 |
| 31 |
28 29 30
|
ltleii |
⊢ 2 ≤ 3 |
| 32 |
|
eluz2 |
⊢ ( 3 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3 ) ) |
| 33 |
26 27 31 32
|
mpbir3an |
⊢ 3 ∈ ( ℤ≥ ‘ 2 ) |
| 34 |
|
fzoss2 |
⊢ ( 3 ∈ ( ℤ≥ ‘ 2 ) → ( 0 ..^ 2 ) ⊆ ( 0 ..^ 3 ) ) |
| 35 |
33 34
|
ax-mp |
⊢ ( 0 ..^ 2 ) ⊆ ( 0 ..^ 3 ) |
| 36 |
35
|
sseli |
⊢ ( 𝑘 ∈ ( 0 ..^ 2 ) → 𝑘 ∈ ( 0 ..^ 3 ) ) |
| 37 |
36 4
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 2 ) ) → 𝐷 ∈ ℂ ) |
| 38 |
19 23 25 37
|
fprodsplit |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 0 ..^ 2 ) 𝐷 = ( ∏ 𝑘 ∈ { 0 } 𝐷 · ∏ 𝑘 ∈ { 1 } 𝐷 ) ) |
| 39 |
38
|
oveq1d |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ ( 0 ..^ 2 ) 𝐷 · ∏ 𝑘 ∈ { 2 } 𝐷 ) = ( ( ∏ 𝑘 ∈ { 0 } 𝐷 · ∏ 𝑘 ∈ { 1 } 𝐷 ) · ∏ 𝑘 ∈ { 2 } 𝐷 ) ) |
| 40 |
16 39
|
eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 0 ..^ 3 ) 𝐷 = ( ( ∏ 𝑘 ∈ { 0 } 𝐷 · ∏ 𝑘 ∈ { 1 } 𝐷 ) · ∏ 𝑘 ∈ { 2 } 𝐷 ) ) |
| 41 |
|
snfi |
⊢ { 0 } ∈ Fin |
| 42 |
41
|
a1i |
⊢ ( 𝜑 → { 0 } ∈ Fin ) |
| 43 |
|
velsn |
⊢ ( 𝑘 ∈ { 0 } ↔ 𝑘 = 0 ) |
| 44 |
1
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → 𝐷 = 𝐴 ) |
| 45 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 3 ) ) ∧ 𝐷 = 𝐴 ) → 𝐷 = 𝐴 ) |
| 46 |
4
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 3 ) ) ∧ 𝐷 = 𝐴 ) → 𝐷 ∈ ℂ ) |
| 47 |
45 46
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 3 ) ) ∧ 𝐷 = 𝐴 ) → 𝐴 ∈ ℂ ) |
| 48 |
|
c0ex |
⊢ 0 ∈ V |
| 49 |
48
|
tpid1 |
⊢ 0 ∈ { 0 , 1 , 2 } |
| 50 |
|
fzo0to3tp |
⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
| 51 |
49 50
|
eleqtrri |
⊢ 0 ∈ ( 0 ..^ 3 ) |
| 52 |
|
eqid |
⊢ 𝐴 = 𝐴 |
| 53 |
1
|
eqeq1d |
⊢ ( 𝑘 = 0 → ( 𝐷 = 𝐴 ↔ 𝐴 = 𝐴 ) ) |
| 54 |
53
|
rspcev |
⊢ ( ( 0 ∈ ( 0 ..^ 3 ) ∧ 𝐴 = 𝐴 ) → ∃ 𝑘 ∈ ( 0 ..^ 3 ) 𝐷 = 𝐴 ) |
| 55 |
51 52 54
|
mp2an |
⊢ ∃ 𝑘 ∈ ( 0 ..^ 3 ) 𝐷 = 𝐴 |
| 56 |
55
|
a1i |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ( 0 ..^ 3 ) 𝐷 = 𝐴 ) |
| 57 |
47 56
|
r19.29a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → 𝐴 ∈ ℂ ) |
| 59 |
44 58
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → 𝐷 ∈ ℂ ) |
| 60 |
43 59
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 0 } ) → 𝐷 ∈ ℂ ) |
| 61 |
42 60
|
fprodcl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ { 0 } 𝐷 ∈ ℂ ) |
| 62 |
|
snfi |
⊢ { 1 } ∈ Fin |
| 63 |
62
|
a1i |
⊢ ( 𝜑 → { 1 } ∈ Fin ) |
| 64 |
|
velsn |
⊢ ( 𝑘 ∈ { 1 } ↔ 𝑘 = 1 ) |
| 65 |
2
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 1 ) → 𝐷 = 𝐵 ) |
| 66 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 3 ) ) ∧ 𝐷 = 𝐵 ) → 𝐷 = 𝐵 ) |
| 67 |
4
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 3 ) ) ∧ 𝐷 = 𝐵 ) → 𝐷 ∈ ℂ ) |
| 68 |
66 67
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 3 ) ) ∧ 𝐷 = 𝐵 ) → 𝐵 ∈ ℂ ) |
| 69 |
|
1ex |
⊢ 1 ∈ V |
| 70 |
69
|
tpid2 |
⊢ 1 ∈ { 0 , 1 , 2 } |
| 71 |
70 50
|
eleqtrri |
⊢ 1 ∈ ( 0 ..^ 3 ) |
| 72 |
|
eqid |
⊢ 𝐵 = 𝐵 |
| 73 |
2
|
eqeq1d |
⊢ ( 𝑘 = 1 → ( 𝐷 = 𝐵 ↔ 𝐵 = 𝐵 ) ) |
| 74 |
73
|
rspcev |
⊢ ( ( 1 ∈ ( 0 ..^ 3 ) ∧ 𝐵 = 𝐵 ) → ∃ 𝑘 ∈ ( 0 ..^ 3 ) 𝐷 = 𝐵 ) |
| 75 |
71 72 74
|
mp2an |
⊢ ∃ 𝑘 ∈ ( 0 ..^ 3 ) 𝐷 = 𝐵 |
| 76 |
75
|
a1i |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ( 0 ..^ 3 ) 𝐷 = 𝐵 ) |
| 77 |
68 76
|
r19.29a |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 1 ) → 𝐵 ∈ ℂ ) |
| 79 |
65 78
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 1 ) → 𝐷 ∈ ℂ ) |
| 80 |
64 79
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 1 } ) → 𝐷 ∈ ℂ ) |
| 81 |
63 80
|
fprodcl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ { 1 } 𝐷 ∈ ℂ ) |
| 82 |
|
snfi |
⊢ { 2 } ∈ Fin |
| 83 |
82
|
a1i |
⊢ ( 𝜑 → { 2 } ∈ Fin ) |
| 84 |
|
velsn |
⊢ ( 𝑘 ∈ { 2 } ↔ 𝑘 = 2 ) |
| 85 |
3
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 2 ) → 𝐷 = 𝐶 ) |
| 86 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 3 ) ) ∧ 𝐷 = 𝐶 ) → 𝐷 = 𝐶 ) |
| 87 |
4
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 3 ) ) ∧ 𝐷 = 𝐶 ) → 𝐷 ∈ ℂ ) |
| 88 |
86 87
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 3 ) ) ∧ 𝐷 = 𝐶 ) → 𝐶 ∈ ℂ ) |
| 89 |
|
2ex |
⊢ 2 ∈ V |
| 90 |
89
|
tpid3 |
⊢ 2 ∈ { 0 , 1 , 2 } |
| 91 |
90 50
|
eleqtrri |
⊢ 2 ∈ ( 0 ..^ 3 ) |
| 92 |
|
eqid |
⊢ 𝐶 = 𝐶 |
| 93 |
3
|
eqeq1d |
⊢ ( 𝑘 = 2 → ( 𝐷 = 𝐶 ↔ 𝐶 = 𝐶 ) ) |
| 94 |
93
|
rspcev |
⊢ ( ( 2 ∈ ( 0 ..^ 3 ) ∧ 𝐶 = 𝐶 ) → ∃ 𝑘 ∈ ( 0 ..^ 3 ) 𝐷 = 𝐶 ) |
| 95 |
91 92 94
|
mp2an |
⊢ ∃ 𝑘 ∈ ( 0 ..^ 3 ) 𝐷 = 𝐶 |
| 96 |
95
|
a1i |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ( 0 ..^ 3 ) 𝐷 = 𝐶 ) |
| 97 |
88 96
|
r19.29a |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 2 ) → 𝐶 ∈ ℂ ) |
| 99 |
85 98
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 2 ) → 𝐷 ∈ ℂ ) |
| 100 |
84 99
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 2 } ) → 𝐷 ∈ ℂ ) |
| 101 |
83 100
|
fprodcl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ { 2 } 𝐷 ∈ ℂ ) |
| 102 |
61 81 101
|
mulassd |
⊢ ( 𝜑 → ( ( ∏ 𝑘 ∈ { 0 } 𝐷 · ∏ 𝑘 ∈ { 1 } 𝐷 ) · ∏ 𝑘 ∈ { 2 } 𝐷 ) = ( ∏ 𝑘 ∈ { 0 } 𝐷 · ( ∏ 𝑘 ∈ { 1 } 𝐷 · ∏ 𝑘 ∈ { 2 } 𝐷 ) ) ) |
| 103 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 104 |
103
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 105 |
1
|
prodsn |
⊢ ( ( 0 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ∏ 𝑘 ∈ { 0 } 𝐷 = 𝐴 ) |
| 106 |
104 57 105
|
syl2anc |
⊢ ( 𝜑 → ∏ 𝑘 ∈ { 0 } 𝐷 = 𝐴 ) |
| 107 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 108 |
107
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 109 |
2
|
prodsn |
⊢ ( ( 1 ∈ ℕ0 ∧ 𝐵 ∈ ℂ ) → ∏ 𝑘 ∈ { 1 } 𝐷 = 𝐵 ) |
| 110 |
108 77 109
|
syl2anc |
⊢ ( 𝜑 → ∏ 𝑘 ∈ { 1 } 𝐷 = 𝐵 ) |
| 111 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 112 |
111
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
| 113 |
3
|
prodsn |
⊢ ( ( 2 ∈ ℕ0 ∧ 𝐶 ∈ ℂ ) → ∏ 𝑘 ∈ { 2 } 𝐷 = 𝐶 ) |
| 114 |
112 97 113
|
syl2anc |
⊢ ( 𝜑 → ∏ 𝑘 ∈ { 2 } 𝐷 = 𝐶 ) |
| 115 |
110 114
|
oveq12d |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ { 1 } 𝐷 · ∏ 𝑘 ∈ { 2 } 𝐷 ) = ( 𝐵 · 𝐶 ) ) |
| 116 |
106 115
|
oveq12d |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ { 0 } 𝐷 · ( ∏ 𝑘 ∈ { 1 } 𝐷 · ∏ 𝑘 ∈ { 2 } 𝐷 ) ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |
| 117 |
40 102 116
|
3eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 0 ..^ 3 ) 𝐷 = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |