Metamath Proof Explorer


Theorem prodge0ld

Description: Infer that a multiplier is nonnegative from a positive multiplicand and nonnegative product. (Contributed by NM, 2-Jul-2005) (Revised by AV, 9-Jul-2022)

Ref Expression
Hypotheses prodge0ld.1 ( 𝜑𝐴 ∈ ℝ )
prodge0ld.2 ( 𝜑𝐵 ∈ ℝ+ )
prodge0ld.3 ( 𝜑 → 0 ≤ ( 𝐴 · 𝐵 ) )
Assertion prodge0ld ( 𝜑 → 0 ≤ 𝐴 )

Proof

Step Hyp Ref Expression
1 prodge0ld.1 ( 𝜑𝐴 ∈ ℝ )
2 prodge0ld.2 ( 𝜑𝐵 ∈ ℝ+ )
3 prodge0ld.3 ( 𝜑 → 0 ≤ ( 𝐴 · 𝐵 ) )
4 2 rpcnd ( 𝜑𝐵 ∈ ℂ )
5 1 recnd ( 𝜑𝐴 ∈ ℂ )
6 4 5 mulcomd ( 𝜑 → ( 𝐵 · 𝐴 ) = ( 𝐴 · 𝐵 ) )
7 3 6 breqtrrd ( 𝜑 → 0 ≤ ( 𝐵 · 𝐴 ) )
8 2 1 7 prodge0rd ( 𝜑 → 0 ≤ 𝐴 )