Database
REAL AND COMPLEX NUMBERS
Order sets
Positive reals (as a subset of complex numbers)
prodge0ld
Metamath Proof Explorer
Description: Infer that a multiplier is nonnegative from a positive multiplicand and
nonnegative product. (Contributed by NM , 2-Jul-2005) (Revised by AV , 9-Jul-2022)
Ref
Expression
Hypotheses
prodge0ld.1
⊢ ( 𝜑 → 𝐴 ∈ ℝ )
prodge0ld.2
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ )
prodge0ld.3
⊢ ( 𝜑 → 0 ≤ ( 𝐴 · 𝐵 ) )
Assertion
prodge0ld
⊢ ( 𝜑 → 0 ≤ 𝐴 )
Proof
Step
Hyp
Ref
Expression
1
prodge0ld.1
⊢ ( 𝜑 → 𝐴 ∈ ℝ )
2
prodge0ld.2
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ )
3
prodge0ld.3
⊢ ( 𝜑 → 0 ≤ ( 𝐴 · 𝐵 ) )
4
2
rpcnd
⊢ ( 𝜑 → 𝐵 ∈ ℂ )
5
1
recnd
⊢ ( 𝜑 → 𝐴 ∈ ℂ )
6
4 5
mulcomd
⊢ ( 𝜑 → ( 𝐵 · 𝐴 ) = ( 𝐴 · 𝐵 ) )
7
3 6
breqtrrd
⊢ ( 𝜑 → 0 ≤ ( 𝐵 · 𝐴 ) )
8
2 1 7
prodge0rd
⊢ ( 𝜑 → 0 ≤ 𝐴 )