Step |
Hyp |
Ref |
Expression |
1 |
|
prodge0rd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
2 |
|
prodge0rd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
prodge0rd.3 |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 · 𝐵 ) ) |
4 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
5 |
1
|
rpred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
6 |
5 2
|
remulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
7 |
4 6 3
|
lensymd |
⊢ ( 𝜑 → ¬ ( 𝐴 · 𝐵 ) < 0 ) |
8 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝐵 ) → 𝐴 ∈ ℝ ) |
9 |
2
|
renegcld |
⊢ ( 𝜑 → - 𝐵 ∈ ℝ ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝐵 ) → - 𝐵 ∈ ℝ ) |
11 |
1
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐴 ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝐵 ) → 0 < 𝐴 ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < - 𝐵 ) → 0 < - 𝐵 ) |
14 |
8 10 12 13
|
mulgt0d |
⊢ ( ( 𝜑 ∧ 0 < - 𝐵 ) → 0 < ( 𝐴 · - 𝐵 ) ) |
15 |
5
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝐵 ) → 𝐴 ∈ ℂ ) |
17 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝐵 ) → 𝐵 ∈ ℂ ) |
19 |
16 18
|
mulneg2d |
⊢ ( ( 𝜑 ∧ 0 < - 𝐵 ) → ( 𝐴 · - 𝐵 ) = - ( 𝐴 · 𝐵 ) ) |
20 |
14 19
|
breqtrd |
⊢ ( ( 𝜑 ∧ 0 < - 𝐵 ) → 0 < - ( 𝐴 · 𝐵 ) ) |
21 |
20
|
ex |
⊢ ( 𝜑 → ( 0 < - 𝐵 → 0 < - ( 𝐴 · 𝐵 ) ) ) |
22 |
2
|
lt0neg1d |
⊢ ( 𝜑 → ( 𝐵 < 0 ↔ 0 < - 𝐵 ) ) |
23 |
6
|
lt0neg1d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) < 0 ↔ 0 < - ( 𝐴 · 𝐵 ) ) ) |
24 |
21 22 23
|
3imtr4d |
⊢ ( 𝜑 → ( 𝐵 < 0 → ( 𝐴 · 𝐵 ) < 0 ) ) |
25 |
7 24
|
mtod |
⊢ ( 𝜑 → ¬ 𝐵 < 0 ) |
26 |
4 2 25
|
nltled |
⊢ ( 𝜑 → 0 ≤ 𝐵 ) |