Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ∈ ℝ ) |
2 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
3 |
1 2
|
leloed |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
4 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → 𝐴 ∈ ℝ ) |
5 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → 𝐵 ∈ ℝ ) |
6 |
4 5
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
7 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → 0 < 𝐴 ) |
8 |
7
|
gt0ne0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → 𝐴 ≠ 0 ) |
9 |
4 8
|
rereccld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → ( 1 / 𝐴 ) ∈ ℝ ) |
10 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → 0 < ( 𝐴 · 𝐵 ) ) |
11 |
|
recgt0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 1 / 𝐴 ) ) |
12 |
11
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → 0 < ( 1 / 𝐴 ) ) |
13 |
6 9 10 12
|
mulgt0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → 0 < ( ( 𝐴 · 𝐵 ) · ( 1 / 𝐴 ) ) ) |
14 |
6
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
15 |
4
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → 𝐴 ∈ ℂ ) |
16 |
14 15 8
|
divrecd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → ( ( 𝐴 · 𝐵 ) / 𝐴 ) = ( ( 𝐴 · 𝐵 ) · ( 1 / 𝐴 ) ) ) |
17 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
18 |
17
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → 𝐵 ∈ ℂ ) |
20 |
19 15 8
|
divcan3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → ( ( 𝐴 · 𝐵 ) / 𝐴 ) = 𝐵 ) |
21 |
16 20
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → ( ( 𝐴 · 𝐵 ) · ( 1 / 𝐴 ) ) = 𝐵 ) |
22 |
13 21
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → 0 < 𝐵 ) |
23 |
22
|
exp32 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐴 → ( 0 < ( 𝐴 · 𝐵 ) → 0 < 𝐵 ) ) ) |
24 |
|
0re |
⊢ 0 ∈ ℝ |
25 |
24
|
ltnri |
⊢ ¬ 0 < 0 |
26 |
18
|
mul02d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 · 𝐵 ) = 0 ) |
27 |
26
|
breq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < ( 0 · 𝐵 ) ↔ 0 < 0 ) ) |
28 |
25 27
|
mtbiri |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ¬ 0 < ( 0 · 𝐵 ) ) |
29 |
28
|
pm2.21d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < ( 0 · 𝐵 ) → 0 < 𝐵 ) ) |
30 |
|
oveq1 |
⊢ ( 0 = 𝐴 → ( 0 · 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
31 |
30
|
breq2d |
⊢ ( 0 = 𝐴 → ( 0 < ( 0 · 𝐵 ) ↔ 0 < ( 𝐴 · 𝐵 ) ) ) |
32 |
31
|
imbi1d |
⊢ ( 0 = 𝐴 → ( ( 0 < ( 0 · 𝐵 ) → 0 < 𝐵 ) ↔ ( 0 < ( 𝐴 · 𝐵 ) → 0 < 𝐵 ) ) ) |
33 |
29 32
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 = 𝐴 → ( 0 < ( 𝐴 · 𝐵 ) → 0 < 𝐵 ) ) ) |
34 |
23 33
|
jaod |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 𝐴 ∨ 0 = 𝐴 ) → ( 0 < ( 𝐴 · 𝐵 ) → 0 < 𝐵 ) ) ) |
35 |
3 34
|
sylbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐴 → ( 0 < ( 𝐴 · 𝐵 ) → 0 < 𝐵 ) ) ) |
36 |
35
|
imp32 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → 0 < 𝐵 ) |