Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
2 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
3 |
|
mulcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
5 |
4
|
breq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < ( 𝐴 · 𝐵 ) ↔ 0 < ( 𝐵 · 𝐴 ) ) ) |
6 |
5
|
biimpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < ( 𝐴 · 𝐵 ) → 0 < ( 𝐵 · 𝐴 ) ) ) |
7 |
|
prodgt0 |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ ( 0 ≤ 𝐵 ∧ 0 < ( 𝐵 · 𝐴 ) ) ) → 0 < 𝐴 ) |
8 |
7
|
ex |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 ≤ 𝐵 ∧ 0 < ( 𝐵 · 𝐴 ) ) → 0 < 𝐴 ) ) |
9 |
8
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐵 ∧ 0 < ( 𝐵 · 𝐴 ) ) → 0 < 𝐴 ) ) |
10 |
6 9
|
sylan2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐵 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 0 < 𝐴 ) ) |
11 |
10
|
imp |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐵 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → 0 < 𝐴 ) |