Metamath Proof Explorer
		
		
		
		Description:  Infer that a multiplicand is positive from a nonnegative multiplier and
       positive product.  (Contributed by NM, 15-May-1999)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ltplus1.1 | ⊢ 𝐴  ∈  ℝ | 
					
						|  |  | prodgt0.2 | ⊢ 𝐵  ∈  ℝ | 
				
					|  | Assertion | prodgt0i | ⊢  ( ( 0  ≤  𝐴  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  0  <  𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltplus1.1 | ⊢ 𝐴  ∈  ℝ | 
						
							| 2 |  | prodgt0.2 | ⊢ 𝐵  ∈  ℝ | 
						
							| 3 |  | prodgt0 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  0  <  ( 𝐴  ·  𝐵 ) ) )  →  0  <  𝐵 ) | 
						
							| 4 | 1 2 3 | mpanl12 | ⊢ ( ( 0  ≤  𝐴  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  0  <  𝐵 ) |