| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prodmo.1 |
⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
| 2 |
|
prodmo.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 3 |
|
prodmo.3 |
⊢ 𝐺 = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) |
| 4 |
|
3simpb |
⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ) |
| 5 |
4
|
reximi |
⊢ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) → ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ) |
| 6 |
|
3simpb |
⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) |
| 7 |
6
|
reximi |
⊢ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) → ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) |
| 8 |
|
fveq2 |
⊢ ( 𝑚 = 𝑤 → ( ℤ≥ ‘ 𝑚 ) = ( ℤ≥ ‘ 𝑤 ) ) |
| 9 |
8
|
sseq2d |
⊢ ( 𝑚 = 𝑤 → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ↔ 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ) ) |
| 10 |
|
seqeq1 |
⊢ ( 𝑚 = 𝑤 → seq 𝑚 ( · , 𝐹 ) = seq 𝑤 ( · , 𝐹 ) ) |
| 11 |
10
|
breq1d |
⊢ ( 𝑚 = 𝑤 → ( seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ↔ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) |
| 12 |
9 11
|
anbi12d |
⊢ ( 𝑚 = 𝑤 → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ↔ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) |
| 13 |
12
|
cbvrexvw |
⊢ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ↔ ∃ 𝑤 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) |
| 14 |
13
|
anbi2i |
⊢ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) ↔ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑤 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) |
| 15 |
|
reeanv |
⊢ ( ∃ 𝑚 ∈ ℤ ∃ 𝑤 ∈ ℤ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ↔ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑤 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) |
| 16 |
14 15
|
bitr4i |
⊢ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) ↔ ∃ 𝑚 ∈ ℤ ∃ 𝑤 ∈ ℤ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) |
| 17 |
|
simprlr |
⊢ ( ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) → seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) ) → seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) |
| 19 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 20 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) ) → 𝑚 ∈ ℤ ) |
| 21 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) ) → 𝑤 ∈ ℤ ) |
| 22 |
|
simprll |
⊢ ( ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) |
| 24 |
|
simprrl |
⊢ ( ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ) |
| 26 |
1 19 20 21 23 25
|
prodrb |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) ) → ( seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ↔ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ) |
| 27 |
18 26
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) ) → seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) |
| 28 |
|
simprrr |
⊢ ( ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) → seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) ) → seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) |
| 30 |
|
climuni |
⊢ ( ( seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) → 𝑥 = 𝑧 ) |
| 31 |
27 29 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) ) → 𝑥 = 𝑧 ) |
| 32 |
31
|
expcom |
⊢ ( ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 33 |
32
|
ex |
⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) → ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 34 |
33
|
rexlimivv |
⊢ ( ∃ 𝑚 ∈ ℤ ∃ 𝑤 ∈ ℤ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 35 |
16 34
|
sylbi |
⊢ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 36 |
5 7 35
|
syl2an |
⊢ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 37 |
1 2 3
|
prodmolem2 |
⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) → 𝑧 = 𝑥 ) ) |
| 38 |
|
equcomi |
⊢ ( 𝑧 = 𝑥 → 𝑥 = 𝑧 ) |
| 39 |
37 38
|
syl6 |
⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑧 ) ) |
| 40 |
39
|
expimpd |
⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) → 𝑥 = 𝑧 ) ) |
| 41 |
40
|
com12 |
⊢ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 42 |
41
|
ancoms |
⊢ ( ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 43 |
1 2 3
|
prodmolem2 |
⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑧 ) ) |
| 44 |
43
|
expimpd |
⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) → 𝑥 = 𝑧 ) ) |
| 45 |
44
|
com12 |
⊢ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 46 |
|
reeanv |
⊢ ( ∃ 𝑚 ∈ ℕ ∃ 𝑤 ∈ ℕ ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ↔ ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑤 ∈ ℕ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ) |
| 47 |
|
exdistrv |
⊢ ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ↔ ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ) |
| 48 |
47
|
2rexbii |
⊢ ( ∃ 𝑚 ∈ ℕ ∃ 𝑤 ∈ ℕ ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑤 ∈ ℕ ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ) |
| 49 |
|
oveq2 |
⊢ ( 𝑚 = 𝑤 → ( 1 ... 𝑚 ) = ( 1 ... 𝑤 ) ) |
| 50 |
49
|
f1oeq2d |
⊢ ( 𝑚 = 𝑤 → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ↔ 𝑓 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) ) |
| 51 |
|
fveq2 |
⊢ ( 𝑚 = 𝑤 → ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) = ( seq 1 ( · , 𝐺 ) ‘ 𝑤 ) ) |
| 52 |
51
|
eqeq2d |
⊢ ( 𝑚 = 𝑤 → ( 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ↔ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑤 ) ) ) |
| 53 |
50 52
|
anbi12d |
⊢ ( 𝑚 = 𝑤 → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑤 ) ) ) ) |
| 54 |
53
|
exbidv |
⊢ ( 𝑚 = 𝑤 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑤 ) ) ) ) |
| 55 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ↔ 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) ) |
| 56 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) |
| 57 |
56
|
csbeq1d |
⊢ ( 𝑓 = 𝑔 → ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) |
| 58 |
57
|
mpteq2dv |
⊢ ( 𝑓 = 𝑔 → ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) |
| 59 |
3 58
|
eqtrid |
⊢ ( 𝑓 = 𝑔 → 𝐺 = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) |
| 60 |
59
|
seqeq3d |
⊢ ( 𝑓 = 𝑔 → seq 1 ( · , 𝐺 ) = seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ) |
| 61 |
60
|
fveq1d |
⊢ ( 𝑓 = 𝑔 → ( seq 1 ( · , 𝐺 ) ‘ 𝑤 ) = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) |
| 62 |
61
|
eqeq2d |
⊢ ( 𝑓 = 𝑔 → ( 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑤 ) ↔ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) |
| 63 |
55 62
|
anbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑤 ) ) ↔ ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ) |
| 64 |
63
|
cbvexvw |
⊢ ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑤 ) ) ↔ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) |
| 65 |
54 64
|
bitrdi |
⊢ ( 𝑚 = 𝑤 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ↔ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ) |
| 66 |
65
|
cbvrexvw |
⊢ ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ↔ ∃ 𝑤 ∈ ℕ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) |
| 67 |
66
|
anbi2i |
⊢ ( ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ↔ ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑤 ∈ ℕ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ) |
| 68 |
46 48 67
|
3bitr4i |
⊢ ( ∃ 𝑚 ∈ ℕ ∃ 𝑤 ∈ ℕ ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ↔ ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) |
| 69 |
|
an4 |
⊢ ( ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ↔ ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) ∧ ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ) |
| 70 |
2
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 71 |
|
fveq2 |
⊢ ( 𝑗 = 𝑎 → ( 𝑓 ‘ 𝑗 ) = ( 𝑓 ‘ 𝑎 ) ) |
| 72 |
71
|
csbeq1d |
⊢ ( 𝑗 = 𝑎 → ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑎 ) / 𝑘 ⦌ 𝐵 ) |
| 73 |
72
|
cbvmptv |
⊢ ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑎 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑎 ) / 𝑘 ⦌ 𝐵 ) |
| 74 |
3 73
|
eqtri |
⊢ 𝐺 = ( 𝑎 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑎 ) / 𝑘 ⦌ 𝐵 ) |
| 75 |
|
fveq2 |
⊢ ( 𝑗 = 𝑎 → ( 𝑔 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑎 ) ) |
| 76 |
75
|
csbeq1d |
⊢ ( 𝑗 = 𝑎 → ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑔 ‘ 𝑎 ) / 𝑘 ⦌ 𝐵 ) |
| 77 |
76
|
cbvmptv |
⊢ ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑎 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑎 ) / 𝑘 ⦌ 𝐵 ) |
| 78 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) ) → ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) |
| 79 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) |
| 80 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) ) → 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) |
| 81 |
1 70 74 77 78 79 80
|
prodmolem3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) ) → ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) |
| 82 |
|
eqeq12 |
⊢ ( ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) → ( 𝑥 = 𝑧 ↔ ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) |
| 83 |
81 82
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) ) → ( ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) → 𝑥 = 𝑧 ) ) |
| 84 |
83
|
expimpd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) ∧ ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) → 𝑥 = 𝑧 ) ) |
| 85 |
69 84
|
biimtrid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) → 𝑥 = 𝑧 ) ) |
| 86 |
85
|
exlimdvv |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) → 𝑥 = 𝑧 ) ) |
| 87 |
86
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℕ ∃ 𝑤 ∈ ℕ ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) → 𝑥 = 𝑧 ) ) |
| 88 |
68 87
|
biimtrrid |
⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) → 𝑥 = 𝑧 ) ) |
| 89 |
88
|
com12 |
⊢ ( ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 90 |
36 42 45 89
|
ccase |
⊢ ( ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 91 |
90
|
com12 |
⊢ ( 𝜑 → ( ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) → 𝑥 = 𝑧 ) ) |
| 92 |
91
|
alrimivv |
⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑧 ( ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) → 𝑥 = 𝑧 ) ) |
| 93 |
|
breq2 |
⊢ ( 𝑥 = 𝑧 → ( seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ↔ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) |
| 94 |
93
|
3anbi3d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ↔ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) |
| 95 |
94
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ↔ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) |
| 96 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ↔ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) |
| 97 |
96
|
anbi2d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) |
| 98 |
97
|
exbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) |
| 99 |
98
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) |
| 100 |
95 99
|
orbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ↔ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) ) |
| 101 |
100
|
mo4 |
⊢ ( ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) → 𝑥 = 𝑧 ) ) |
| 102 |
92 101
|
sylibr |
⊢ ( 𝜑 → ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) |