Step |
Hyp |
Ref |
Expression |
1 |
|
prodmo.1 |
⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
2 |
|
prodmo.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
3 |
|
prodmo.3 |
⊢ 𝐺 = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) |
4 |
|
3simpb |
⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ) |
5 |
4
|
reximi |
⊢ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) → ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑚 = 𝑤 → ( ℤ≥ ‘ 𝑚 ) = ( ℤ≥ ‘ 𝑤 ) ) |
7 |
6
|
sseq2d |
⊢ ( 𝑚 = 𝑤 → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ↔ 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ) ) |
8 |
|
seqeq1 |
⊢ ( 𝑚 = 𝑤 → seq 𝑚 ( · , 𝐹 ) = seq 𝑤 ( · , 𝐹 ) ) |
9 |
8
|
breq1d |
⊢ ( 𝑚 = 𝑤 → ( seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ↔ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ) |
10 |
7 9
|
anbi12d |
⊢ ( 𝑚 = 𝑤 → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ↔ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ) ) |
11 |
10
|
cbvrexvw |
⊢ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ↔ ∃ 𝑤 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ) |
12 |
|
reeanv |
⊢ ( ∃ 𝑤 ∈ ℤ ∃ 𝑚 ∈ ℕ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ↔ ( ∃ 𝑤 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) |
13 |
|
simprlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) |
14 |
|
simprll |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ) |
15 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑤 ) ⊆ ℤ |
16 |
|
zssre |
⊢ ℤ ⊆ ℝ |
17 |
15 16
|
sstri |
⊢ ( ℤ≥ ‘ 𝑤 ) ⊆ ℝ |
18 |
14 17
|
sstrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → 𝐴 ⊆ ℝ ) |
19 |
|
ltso |
⊢ < Or ℝ |
20 |
|
soss |
⊢ ( 𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴 ) ) |
21 |
18 19 20
|
mpisyl |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → < Or 𝐴 ) |
22 |
|
fzfi |
⊢ ( 1 ... 𝑚 ) ∈ Fin |
23 |
|
ovex |
⊢ ( 1 ... 𝑚 ) ∈ V |
24 |
23
|
f1oen |
⊢ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 → ( 1 ... 𝑚 ) ≈ 𝐴 ) |
25 |
24
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → ( 1 ... 𝑚 ) ≈ 𝐴 ) |
26 |
25
|
ensymd |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → 𝐴 ≈ ( 1 ... 𝑚 ) ) |
27 |
|
enfii |
⊢ ( ( ( 1 ... 𝑚 ) ∈ Fin ∧ 𝐴 ≈ ( 1 ... 𝑚 ) ) → 𝐴 ∈ Fin ) |
28 |
22 26 27
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → 𝐴 ∈ Fin ) |
29 |
|
fz1iso |
⊢ ( ( < Or 𝐴 ∧ 𝐴 ∈ Fin ) → ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
30 |
21 28 29
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
31 |
2
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
32 |
|
eqid |
⊢ ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) |
33 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑚 ∈ ℕ ) |
34 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑤 ∈ ℤ ) |
35 |
|
simplll |
⊢ ( ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ) |
36 |
35
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ) |
37 |
|
simprlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) |
38 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
39 |
1 31 3 32 33 34 36 37 38
|
prodmolem2a |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → seq 𝑤 ( · , 𝐹 ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) |
40 |
39
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → ( 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → seq 𝑤 ( · , 𝐹 ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) |
41 |
40
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → ( ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → seq 𝑤 ( · , 𝐹 ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) |
42 |
30 41
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → seq 𝑤 ( · , 𝐹 ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) |
43 |
|
climuni |
⊢ ( ( seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ∧ seq 𝑤 ( · , 𝐹 ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) |
44 |
13 42 43
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) |
45 |
|
eqeq2 |
⊢ ( 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) → ( 𝑥 = 𝑧 ↔ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) |
46 |
44 45
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → ( 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) → 𝑥 = 𝑧 ) ) |
47 |
46
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ) → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 → ( 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) → 𝑥 = 𝑧 ) ) ) |
48 |
47
|
impd |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ) → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑧 ) ) |
49 |
48
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑧 ) ) |
50 |
49
|
expimpd |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) → ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) → 𝑥 = 𝑧 ) ) |
51 |
50
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ℤ ∃ 𝑚 ∈ ℕ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) → 𝑥 = 𝑧 ) ) |
52 |
12 51
|
syl5bir |
⊢ ( 𝜑 → ( ( ∃ 𝑤 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) → 𝑥 = 𝑧 ) ) |
53 |
52
|
expdimp |
⊢ ( ( 𝜑 ∧ ∃ 𝑤 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑧 ) ) |
54 |
11 53
|
sylan2b |
⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑧 ) ) |
55 |
5 54
|
sylan2 |
⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑧 ) ) |