Step |
Hyp |
Ref |
Expression |
1 |
|
prodmo.1 |
⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
2 |
|
prodmo.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
3 |
|
prodmo.3 |
⊢ 𝐺 = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) |
4 |
|
prodmolem2.4 |
⊢ 𝐻 = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝐾 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) |
5 |
|
prodmolem2.5 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
6 |
|
prodmolem2.6 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
7 |
|
prodmolem2.7 |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
8 |
|
prodmolem2.8 |
⊢ ( 𝜑 → 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 ) |
9 |
|
prodmolem2.9 |
⊢ ( 𝜑 → 𝐾 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
10 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
11 |
10 8
|
hasheqf1od |
⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = ( ♯ ‘ 𝐴 ) ) |
12 |
5
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
13 |
|
hashfz1 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |
15 |
11 14
|
eqtr3d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = 𝑁 ) |
16 |
15
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... ( ♯ ‘ 𝐴 ) ) = ( 1 ... 𝑁 ) ) |
17 |
|
isoeq4 |
⊢ ( ( 1 ... ( ♯ ‘ 𝐴 ) ) = ( 1 ... 𝑁 ) → ( 𝐾 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ↔ 𝐾 Isom < , < ( ( 1 ... 𝑁 ) , 𝐴 ) ) ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ( 𝐾 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ↔ 𝐾 Isom < , < ( ( 1 ... 𝑁 ) , 𝐴 ) ) ) |
19 |
9 18
|
mpbid |
⊢ ( 𝜑 → 𝐾 Isom < , < ( ( 1 ... 𝑁 ) , 𝐴 ) ) |
20 |
|
isof1o |
⊢ ( 𝐾 Isom < , < ( ( 1 ... 𝑁 ) , 𝐴 ) → 𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 ) |
21 |
|
f1of |
⊢ ( 𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 → 𝐾 : ( 1 ... 𝑁 ) ⟶ 𝐴 ) |
22 |
19 20 21
|
3syl |
⊢ ( 𝜑 → 𝐾 : ( 1 ... 𝑁 ) ⟶ 𝐴 ) |
23 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
24 |
5 23
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
25 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
26 |
24 25
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
27 |
22 26
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝑁 ) ∈ 𝐴 ) |
28 |
7 27
|
sseldd |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
29 |
7
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
30 |
19 20
|
syl |
⊢ ( 𝜑 → 𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 ) |
31 |
|
f1ocnvfv2 |
⊢ ( ( 𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐾 ‘ ( ◡ 𝐾 ‘ 𝑗 ) ) = 𝑗 ) |
32 |
30 31
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐾 ‘ ( ◡ 𝐾 ‘ 𝑗 ) ) = 𝑗 ) |
33 |
|
f1ocnv |
⊢ ( 𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 → ◡ 𝐾 : 𝐴 –1-1-onto→ ( 1 ... 𝑁 ) ) |
34 |
|
f1of |
⊢ ( ◡ 𝐾 : 𝐴 –1-1-onto→ ( 1 ... 𝑁 ) → ◡ 𝐾 : 𝐴 ⟶ ( 1 ... 𝑁 ) ) |
35 |
30 33 34
|
3syl |
⊢ ( 𝜑 → ◡ 𝐾 : 𝐴 ⟶ ( 1 ... 𝑁 ) ) |
36 |
35
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ◡ 𝐾 ‘ 𝑗 ) ∈ ( 1 ... 𝑁 ) ) |
37 |
|
elfzle2 |
⊢ ( ( ◡ 𝐾 ‘ 𝑗 ) ∈ ( 1 ... 𝑁 ) → ( ◡ 𝐾 ‘ 𝑗 ) ≤ 𝑁 ) |
38 |
36 37
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ◡ 𝐾 ‘ 𝑗 ) ≤ 𝑁 ) |
39 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐾 Isom < , < ( ( 1 ... 𝑁 ) , 𝐴 ) ) |
40 |
|
fzssuz |
⊢ ( 1 ... 𝑁 ) ⊆ ( ℤ≥ ‘ 1 ) |
41 |
|
uzssz |
⊢ ( ℤ≥ ‘ 1 ) ⊆ ℤ |
42 |
|
zssre |
⊢ ℤ ⊆ ℝ |
43 |
41 42
|
sstri |
⊢ ( ℤ≥ ‘ 1 ) ⊆ ℝ |
44 |
40 43
|
sstri |
⊢ ( 1 ... 𝑁 ) ⊆ ℝ |
45 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
46 |
44 45
|
sstri |
⊢ ( 1 ... 𝑁 ) ⊆ ℝ* |
47 |
46
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 1 ... 𝑁 ) ⊆ ℝ* ) |
48 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
49 |
48 42
|
sstri |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ |
50 |
49 45
|
sstri |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ* |
51 |
7 50
|
sstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐴 ⊆ ℝ* ) |
53 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
54 |
|
leisorel |
⊢ ( ( 𝐾 Isom < , < ( ( 1 ... 𝑁 ) , 𝐴 ) ∧ ( ( 1 ... 𝑁 ) ⊆ ℝ* ∧ 𝐴 ⊆ ℝ* ) ∧ ( ( ◡ 𝐾 ‘ 𝑗 ) ∈ ( 1 ... 𝑁 ) ∧ 𝑁 ∈ ( 1 ... 𝑁 ) ) ) → ( ( ◡ 𝐾 ‘ 𝑗 ) ≤ 𝑁 ↔ ( 𝐾 ‘ ( ◡ 𝐾 ‘ 𝑗 ) ) ≤ ( 𝐾 ‘ 𝑁 ) ) ) |
55 |
39 47 52 36 53 54
|
syl122anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( ◡ 𝐾 ‘ 𝑗 ) ≤ 𝑁 ↔ ( 𝐾 ‘ ( ◡ 𝐾 ‘ 𝑗 ) ) ≤ ( 𝐾 ‘ 𝑁 ) ) ) |
56 |
38 55
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐾 ‘ ( ◡ 𝐾 ‘ 𝑗 ) ) ≤ ( 𝐾 ‘ 𝑁 ) ) |
57 |
32 56
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ≤ ( 𝐾 ‘ 𝑁 ) ) |
58 |
7 48
|
sstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ℤ ) |
59 |
58
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ∈ ℤ ) |
60 |
|
eluzelz |
⊢ ( ( 𝐾 ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ‘ 𝑁 ) ∈ ℤ ) |
61 |
28 60
|
syl |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝑁 ) ∈ ℤ ) |
62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐾 ‘ 𝑁 ) ∈ ℤ ) |
63 |
|
eluz |
⊢ ( ( 𝑗 ∈ ℤ ∧ ( 𝐾 ‘ 𝑁 ) ∈ ℤ ) → ( ( 𝐾 ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑗 ) ↔ 𝑗 ≤ ( 𝐾 ‘ 𝑁 ) ) ) |
64 |
59 62 63
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝐾 ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑗 ) ↔ 𝑗 ≤ ( 𝐾 ‘ 𝑁 ) ) ) |
65 |
57 64
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐾 ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
66 |
|
elfzuzb |
⊢ ( 𝑗 ∈ ( 𝑀 ... ( 𝐾 ‘ 𝑁 ) ) ↔ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐾 ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) ) |
67 |
29 65 66
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ∈ ( 𝑀 ... ( 𝐾 ‘ 𝑁 ) ) ) |
68 |
67
|
ex |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝐴 → 𝑗 ∈ ( 𝑀 ... ( 𝐾 ‘ 𝑁 ) ) ) ) |
69 |
68
|
ssrdv |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑀 ... ( 𝐾 ‘ 𝑁 ) ) ) |
70 |
1 2 28 69
|
fprodcvg |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝐾 ‘ 𝑁 ) ) ) |
71 |
|
mulid2 |
⊢ ( 𝑚 ∈ ℂ → ( 1 · 𝑚 ) = 𝑚 ) |
72 |
71
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℂ ) → ( 1 · 𝑚 ) = 𝑚 ) |
73 |
|
mulid1 |
⊢ ( 𝑚 ∈ ℂ → ( 𝑚 · 1 ) = 𝑚 ) |
74 |
73
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℂ ) → ( 𝑚 · 1 ) = 𝑚 ) |
75 |
|
mulcl |
⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑚 · 𝑥 ) ∈ ℂ ) |
76 |
75
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑚 · 𝑥 ) ∈ ℂ ) |
77 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
78 |
26 16
|
eleqtrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
79 |
|
iftrue |
⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 𝐵 ) |
80 |
79
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 𝐵 ) |
81 |
80 2
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
82 |
81
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) ) |
83 |
|
iffalse |
⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 1 ) |
84 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
85 |
83 84
|
eqeltrdi |
⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
86 |
82 85
|
pm2.61d1 |
⊢ ( 𝜑 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
88 |
87 1
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ℤ ⟶ ℂ ) |
89 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℤ ) |
90 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℤ ⟶ ℂ ∧ 𝑚 ∈ ℤ ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
91 |
88 89 90
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
92 |
|
fveqeq2 |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐹 ‘ 𝑘 ) = 1 ↔ ( 𝐹 ‘ 𝑚 ) = 1 ) ) |
93 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → 𝑘 ∈ ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
94 |
93
|
elfzelzd |
⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → 𝑘 ∈ ℤ ) |
95 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → ¬ 𝑘 ∈ 𝐴 ) |
96 |
95 83
|
syl |
⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 1 ) |
97 |
96 84
|
eqeltrdi |
⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
98 |
1
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℤ ∧ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
99 |
94 97 98
|
syl2anc |
⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
100 |
99 96
|
eqtrd |
⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = 1 ) |
101 |
92 100
|
vtoclga |
⊢ ( 𝑚 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) → ( 𝐹 ‘ 𝑚 ) = 1 ) |
102 |
101
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( 𝑀 ... ( 𝐾 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑚 ) = 1 ) |
103 |
|
isof1o |
⊢ ( 𝐾 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → 𝐾 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
104 |
|
f1of |
⊢ ( 𝐾 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝐾 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
105 |
9 103 104
|
3syl |
⊢ ( 𝜑 → 𝐾 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
106 |
105
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 ) |
107 |
106
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) = ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) |
108 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝐴 ⊆ ℤ ) |
109 |
108 106
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐾 ‘ 𝑥 ) ∈ ℤ ) |
110 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
111 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 |
112 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 |
113 |
|
nfcv |
⊢ Ⅎ 𝑘 1 |
114 |
111 112 113
|
nfif |
⊢ Ⅎ 𝑘 if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) |
115 |
114
|
nfel1 |
⊢ Ⅎ 𝑘 if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ∈ ℂ |
116 |
110 115
|
nfim |
⊢ Ⅎ 𝑘 ( 𝜑 → if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ∈ ℂ ) |
117 |
|
fvex |
⊢ ( 𝐾 ‘ 𝑥 ) ∈ V |
118 |
|
eleq1 |
⊢ ( 𝑘 = ( 𝐾 ‘ 𝑥 ) → ( 𝑘 ∈ 𝐴 ↔ ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 ) ) |
119 |
|
csbeq1a |
⊢ ( 𝑘 = ( 𝐾 ‘ 𝑥 ) → 𝐵 = ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) |
120 |
118 119
|
ifbieq1d |
⊢ ( 𝑘 = ( 𝐾 ‘ 𝑥 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ) |
121 |
120
|
eleq1d |
⊢ ( 𝑘 = ( 𝐾 ‘ 𝑥 ) → ( if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ↔ if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ∈ ℂ ) ) |
122 |
121
|
imbi2d |
⊢ ( 𝑘 = ( 𝐾 ‘ 𝑥 ) → ( ( 𝜑 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) ↔ ( 𝜑 → if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ∈ ℂ ) ) ) |
123 |
116 117 122 86
|
vtoclf |
⊢ ( 𝜑 → if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ∈ ℂ ) |
124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ∈ ℂ ) |
125 |
|
eleq1 |
⊢ ( 𝑛 = ( 𝐾 ‘ 𝑥 ) → ( 𝑛 ∈ 𝐴 ↔ ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 ) ) |
126 |
|
csbeq1 |
⊢ ( 𝑛 = ( 𝐾 ‘ 𝑥 ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐵 = ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) |
127 |
125 126
|
ifbieq1d |
⊢ ( 𝑛 = ( 𝐾 ‘ 𝑥 ) → if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 1 ) = if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ) |
128 |
|
nfcv |
⊢ Ⅎ 𝑛 if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) |
129 |
|
nfv |
⊢ Ⅎ 𝑘 𝑛 ∈ 𝐴 |
130 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑛 / 𝑘 ⦌ 𝐵 |
131 |
129 130 113
|
nfif |
⊢ Ⅎ 𝑘 if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 1 ) |
132 |
|
eleq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 ∈ 𝐴 ↔ 𝑛 ∈ 𝐴 ) ) |
133 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑛 → 𝐵 = ⦋ 𝑛 / 𝑘 ⦌ 𝐵 ) |
134 |
132 133
|
ifbieq1d |
⊢ ( 𝑘 = 𝑛 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 1 ) ) |
135 |
128 131 134
|
cbvmpt |
⊢ ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) = ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 1 ) ) |
136 |
1 135
|
eqtri |
⊢ 𝐹 = ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 1 ) ) |
137 |
127 136
|
fvmptg |
⊢ ( ( ( 𝐾 ‘ 𝑥 ) ∈ ℤ ∧ if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ∈ ℂ ) → ( 𝐹 ‘ ( 𝐾 ‘ 𝑥 ) ) = if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ) |
138 |
109 124 137
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐹 ‘ ( 𝐾 ‘ 𝑥 ) ) = if ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐴 , ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 , 1 ) ) |
139 |
|
elfznn |
⊢ ( 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → 𝑥 ∈ ℕ ) |
140 |
107 124
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
141 |
|
fveq2 |
⊢ ( 𝑗 = 𝑥 → ( 𝐾 ‘ 𝑗 ) = ( 𝐾 ‘ 𝑥 ) ) |
142 |
141
|
csbeq1d |
⊢ ( 𝑗 = 𝑥 → ⦋ ( 𝐾 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) |
143 |
142 4
|
fvmptg |
⊢ ( ( 𝑥 ∈ ℕ ∧ ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) → ( 𝐻 ‘ 𝑥 ) = ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) |
144 |
139 140 143
|
syl2an2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ 𝑥 ) = ⦋ ( 𝐾 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) |
145 |
107 138 144
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐾 ‘ 𝑥 ) ) ) |
146 |
72 74 76 77 9 78 7 91 102 145
|
seqcoll |
⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝐾 ‘ 𝑁 ) ) = ( seq 1 ( · , 𝐻 ) ‘ 𝑁 ) ) |
147 |
5 5
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) |
148 |
1 2 3 4 147 8 30
|
prodmolem3 |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) = ( seq 1 ( · , 𝐻 ) ‘ 𝑁 ) ) |
149 |
146 148
|
eqtr4d |
⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝐾 ‘ 𝑁 ) ) = ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) |
150 |
70 149
|
breqtrd |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) |