Metamath Proof Explorer


Theorem prodpr

Description: A product over a pair is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022)

Ref Expression
Hypotheses prodpr.1 ( 𝑘 = 𝐴𝐷 = 𝐸 )
prodpr.2 ( 𝑘 = 𝐵𝐷 = 𝐹 )
prodpr.a ( 𝜑𝐴𝑉 )
prodpr.b ( 𝜑𝐵𝑊 )
prodpr.e ( 𝜑𝐸 ∈ ℂ )
prodpr.f ( 𝜑𝐹 ∈ ℂ )
prodpr.3 ( 𝜑𝐴𝐵 )
Assertion prodpr ( 𝜑 → ∏ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐷 = ( 𝐸 · 𝐹 ) )

Proof

Step Hyp Ref Expression
1 prodpr.1 ( 𝑘 = 𝐴𝐷 = 𝐸 )
2 prodpr.2 ( 𝑘 = 𝐵𝐷 = 𝐹 )
3 prodpr.a ( 𝜑𝐴𝑉 )
4 prodpr.b ( 𝜑𝐵𝑊 )
5 prodpr.e ( 𝜑𝐸 ∈ ℂ )
6 prodpr.f ( 𝜑𝐹 ∈ ℂ )
7 prodpr.3 ( 𝜑𝐴𝐵 )
8 disjsn2 ( 𝐴𝐵 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ )
9 7 8 syl ( 𝜑 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ )
10 df-pr { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } )
11 10 a1i ( 𝜑 → { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) )
12 prfi { 𝐴 , 𝐵 } ∈ Fin
13 12 a1i ( 𝜑 → { 𝐴 , 𝐵 } ∈ Fin )
14 vex 𝑘 ∈ V
15 14 elpr ( 𝑘 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑘 = 𝐴𝑘 = 𝐵 ) )
16 1 adantl ( ( 𝜑𝑘 = 𝐴 ) → 𝐷 = 𝐸 )
17 5 adantr ( ( 𝜑𝑘 = 𝐴 ) → 𝐸 ∈ ℂ )
18 16 17 eqeltrd ( ( 𝜑𝑘 = 𝐴 ) → 𝐷 ∈ ℂ )
19 2 adantl ( ( 𝜑𝑘 = 𝐵 ) → 𝐷 = 𝐹 )
20 6 adantr ( ( 𝜑𝑘 = 𝐵 ) → 𝐹 ∈ ℂ )
21 19 20 eqeltrd ( ( 𝜑𝑘 = 𝐵 ) → 𝐷 ∈ ℂ )
22 18 21 jaodan ( ( 𝜑 ∧ ( 𝑘 = 𝐴𝑘 = 𝐵 ) ) → 𝐷 ∈ ℂ )
23 15 22 sylan2b ( ( 𝜑𝑘 ∈ { 𝐴 , 𝐵 } ) → 𝐷 ∈ ℂ )
24 9 11 13 23 fprodsplit ( 𝜑 → ∏ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐷 = ( ∏ 𝑘 ∈ { 𝐴 } 𝐷 · ∏ 𝑘 ∈ { 𝐵 } 𝐷 ) )
25 1 prodsn ( ( 𝐴𝑉𝐸 ∈ ℂ ) → ∏ 𝑘 ∈ { 𝐴 } 𝐷 = 𝐸 )
26 3 5 25 syl2anc ( 𝜑 → ∏ 𝑘 ∈ { 𝐴 } 𝐷 = 𝐸 )
27 2 prodsn ( ( 𝐵𝑊𝐹 ∈ ℂ ) → ∏ 𝑘 ∈ { 𝐵 } 𝐷 = 𝐹 )
28 4 6 27 syl2anc ( 𝜑 → ∏ 𝑘 ∈ { 𝐵 } 𝐷 = 𝐹 )
29 26 28 oveq12d ( 𝜑 → ( ∏ 𝑘 ∈ { 𝐴 } 𝐷 · ∏ 𝑘 ∈ { 𝐵 } 𝐷 ) = ( 𝐸 · 𝐹 ) )
30 24 29 eqtrd ( 𝜑 → ∏ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐷 = ( 𝐸 · 𝐹 ) )