Metamath Proof Explorer


Theorem prodrb

Description: Rebase the starting point of a product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses prodmo.1 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) )
prodmo.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
prodrb.4 ( 𝜑𝑀 ∈ ℤ )
prodrb.5 ( 𝜑𝑁 ∈ ℤ )
prodrb.6 ( 𝜑𝐴 ⊆ ( ℤ𝑀 ) )
prodrb.7 ( 𝜑𝐴 ⊆ ( ℤ𝑁 ) )
Assertion prodrb ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( · , 𝐹 ) ⇝ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 prodmo.1 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) )
2 prodmo.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
3 prodrb.4 ( 𝜑𝑀 ∈ ℤ )
4 prodrb.5 ( 𝜑𝑁 ∈ ℤ )
5 prodrb.6 ( 𝜑𝐴 ⊆ ( ℤ𝑀 ) )
6 prodrb.7 ( 𝜑𝐴 ⊆ ( ℤ𝑁 ) )
7 1 2 3 4 5 6 prodrblem2 ( ( 𝜑𝑁 ∈ ( ℤ𝑀 ) ) → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( · , 𝐹 ) ⇝ 𝐶 ) )
8 1 2 4 3 6 5 prodrblem2 ( ( 𝜑𝑀 ∈ ( ℤ𝑁 ) ) → ( seq 𝑁 ( · , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑀 ( · , 𝐹 ) ⇝ 𝐶 ) )
9 8 bicomd ( ( 𝜑𝑀 ∈ ( ℤ𝑁 ) ) → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( · , 𝐹 ) ⇝ 𝐶 ) )
10 uztric ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ𝑀 ) ∨ 𝑀 ∈ ( ℤ𝑁 ) ) )
11 3 4 10 syl2anc ( 𝜑 → ( 𝑁 ∈ ( ℤ𝑀 ) ∨ 𝑀 ∈ ( ℤ𝑁 ) ) )
12 7 9 11 mpjaodan ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( · , 𝐹 ) ⇝ 𝐶 ) )