Step |
Hyp |
Ref |
Expression |
1 |
|
prodmo.1 |
⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
2 |
|
prodmo.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
3 |
|
prodrb.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
prodrb.5 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
5 |
|
prodrb.6 |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
6 |
|
prodrb.7 |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) |
7 |
1 2 3 4 5 6
|
prodrblem2 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( · , 𝐹 ) ⇝ 𝐶 ) ) |
8 |
1 2 4 3 6 5
|
prodrblem2 |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑁 ( · , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑀 ( · , 𝐹 ) ⇝ 𝐶 ) ) |
9 |
8
|
bicomd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( · , 𝐹 ) ⇝ 𝐶 ) ) |
10 |
|
uztric |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) |
11 |
3 4 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) |
12 |
7 9 11
|
mpjaodan |
⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( · , 𝐹 ) ⇝ 𝐶 ) ) |