Step |
Hyp |
Ref |
Expression |
1 |
|
prodmo.1 |
⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
2 |
|
prodmo.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
3 |
|
prodrb.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
4 |
|
mulid2 |
⊢ ( 𝑛 ∈ ℂ → ( 1 · 𝑛 ) = 𝑛 ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ℂ ) → ( 1 · 𝑛 ) = 𝑛 ) |
6 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) → 1 ∈ ℂ ) |
7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
8 |
|
iftrue |
⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 𝐵 ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 𝐵 ) |
10 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
11 |
9 10
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
12 |
11
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) ) |
13 |
|
iffalse |
⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 1 ) |
14 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
15 |
13 14
|
eqeltrdi |
⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
16 |
12 15
|
pm2.61d1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
17 |
16 1
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ℤ ⟶ ℂ ) |
18 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
19 |
18 3
|
sselid |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
20 |
17 19
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℂ ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑁 ) ∈ ℂ ) |
22 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → 𝑛 ∈ ℤ ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝑛 ∈ ℤ ) |
24 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) |
25 |
19
|
zcnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ℂ ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ℂ ) |
28 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 1 ∈ ℂ ) |
29 |
27 28
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
30 |
29
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) = ( ℤ≥ ‘ 𝑁 ) ) |
31 |
24 30
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) |
32 |
|
fznuz |
⊢ ( 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → ¬ 𝑛 ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) |
33 |
32
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ¬ 𝑛 ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) |
34 |
31 33
|
ssneldd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ¬ 𝑛 ∈ 𝐴 ) |
35 |
23 34
|
eldifd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝑛 ∈ ( ℤ ∖ 𝐴 ) ) |
36 |
|
fveqeq2 |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) = 1 ↔ ( 𝐹 ‘ 𝑛 ) = 1 ) ) |
37 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → 𝑘 ∈ ℤ ) |
38 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → ¬ 𝑘 ∈ 𝐴 ) |
39 |
38 13
|
syl |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 1 ) |
40 |
39 14
|
eqeltrdi |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
41 |
1
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℤ ∧ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
42 |
37 40 41
|
syl2anc |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
43 |
42 39
|
eqtrd |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = 1 ) |
44 |
36 43
|
vtoclga |
⊢ ( 𝑛 ∈ ( ℤ ∖ 𝐴 ) → ( 𝐹 ‘ 𝑛 ) = 1 ) |
45 |
35 44
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ 𝑛 ) = 1 ) |
46 |
5 6 7 21 45
|
seqid |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( · , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑁 ) ) = seq 𝑁 ( · , 𝐹 ) ) |