| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prodmo.1 | ⊢ 𝐹  =  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) | 
						
							| 2 |  | prodmo.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | prodrb.4 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | prodrb.5 | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 5 |  | prodrb.6 | ⊢ ( 𝜑  →  𝐴  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 6 |  | prodrb.7 | ⊢ ( 𝜑  →  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 7 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 8 |  | seqex | ⊢ seq 𝑀 (  ·  ,  𝐹 )  ∈  V | 
						
							| 9 |  | climres | ⊢ ( ( 𝑁  ∈  ℤ  ∧  seq 𝑀 (  ·  ,  𝐹 )  ∈  V )  →  ( ( seq 𝑀 (  ·  ,  𝐹 )  ↾  ( ℤ≥ ‘ 𝑁 ) )  ⇝  𝐶  ↔  seq 𝑀 (  ·  ,  𝐹 )  ⇝  𝐶 ) ) | 
						
							| 10 | 7 8 9 | sylancl | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( seq 𝑀 (  ·  ,  𝐹 )  ↾  ( ℤ≥ ‘ 𝑁 ) )  ⇝  𝐶  ↔  seq 𝑀 (  ·  ,  𝐹 )  ⇝  𝐶 ) ) | 
						
							| 11 | 2 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 13 | 1 11 12 | prodrblem | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) )  →  ( seq 𝑀 (  ·  ,  𝐹 )  ↾  ( ℤ≥ ‘ 𝑁 ) )  =  seq 𝑁 (  ·  ,  𝐹 ) ) | 
						
							| 14 | 6 13 | mpidan | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( seq 𝑀 (  ·  ,  𝐹 )  ↾  ( ℤ≥ ‘ 𝑁 ) )  =  seq 𝑁 (  ·  ,  𝐹 ) ) | 
						
							| 15 | 14 | breq1d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( seq 𝑀 (  ·  ,  𝐹 )  ↾  ( ℤ≥ ‘ 𝑁 ) )  ⇝  𝐶  ↔  seq 𝑁 (  ·  ,  𝐹 )  ⇝  𝐶 ) ) | 
						
							| 16 | 10 15 | bitr3d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( seq 𝑀 (  ·  ,  𝐹 )  ⇝  𝐶  ↔  seq 𝑁 (  ·  ,  𝐹 )  ⇝  𝐶 ) ) |