Step |
Hyp |
Ref |
Expression |
1 |
|
prodss.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
2 |
|
prodss.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
3 |
|
prodss.3 |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ) |
4 |
|
prodss.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 1 ) |
5 |
|
prodss.5 |
⊢ ( 𝜑 → 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
6 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) |
8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ) |
9 |
1 5
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
11 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
12 |
|
iftrue |
⊢ ( 𝑚 ∈ 𝐵 → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
14 |
2
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
16 |
|
eldif |
⊢ ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴 ) ) |
17 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
18 |
4 17
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
19 |
16 18
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
20 |
19
|
expr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( ¬ 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
21 |
15 20
|
pm2.61d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
22 |
21
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
23 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐶 |
24 |
23
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ∈ ℂ |
25 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑚 → 𝐶 = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
26 |
25
|
eleq1d |
⊢ ( 𝑘 = 𝑚 → ( 𝐶 ∈ ℂ ↔ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
27 |
24 26
|
rspc |
⊢ ( 𝑚 ∈ 𝐵 → ( ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ → ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
28 |
22 27
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
29 |
13 28
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ∈ ℂ ) |
30 |
|
iffalse |
⊢ ( ¬ 𝑚 ∈ 𝐵 → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) = 1 ) |
31 |
30 17
|
eqeltrdi |
⊢ ( ¬ 𝑚 ∈ 𝐵 → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ∈ ℂ ) |
32 |
31
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ∈ ℂ ) |
33 |
29 32
|
pm2.61dan |
⊢ ( 𝜑 → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ∈ ℂ ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ∈ ℂ ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ∈ ℂ ) |
36 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑚 |
37 |
|
nfv |
⊢ Ⅎ 𝑘 𝑚 ∈ 𝐵 |
38 |
|
nfcv |
⊢ Ⅎ 𝑘 1 |
39 |
37 23 38
|
nfif |
⊢ Ⅎ 𝑘 if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) |
40 |
|
eleq1w |
⊢ ( 𝑘 = 𝑚 → ( 𝑘 ∈ 𝐵 ↔ 𝑚 ∈ 𝐵 ) ) |
41 |
40 25
|
ifbieq1d |
⊢ ( 𝑘 = 𝑚 → if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
42 |
|
eqid |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) = ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) |
43 |
36 39 41 42
|
fvmptf |
⊢ ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ∈ ℂ ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
44 |
11 35 43
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
45 |
|
iftrue |
⊢ ( 𝑚 ∈ 𝐴 → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ) |
46 |
45
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐴 ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ) |
47 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐴 ) → 𝑚 ∈ 𝐴 ) |
48 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝐴 ⊆ 𝐵 ) |
49 |
48
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐴 ) → 𝑚 ∈ 𝐵 ) |
50 |
28
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
51 |
49 50
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐴 ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
52 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) |
53 |
52
|
fvmpts |
⊢ ( ( 𝑚 ∈ 𝐴 ∧ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ∈ ℂ ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
54 |
47 51 53
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
55 |
46 54
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐴 ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
56 |
55
|
ex |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( 𝑚 ∈ 𝐴 → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) ) |
57 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → ( 𝑚 ∈ 𝐴 → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) ) |
58 |
|
iffalse |
⊢ ( ¬ 𝑚 ∈ 𝐴 → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = 1 ) |
59 |
58
|
adantl |
⊢ ( ( 𝑚 ∈ 𝐵 ∧ ¬ 𝑚 ∈ 𝐴 ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = 1 ) |
60 |
59
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑚 ∈ 𝐵 ∧ ¬ 𝑚 ∈ 𝐴 ) ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = 1 ) |
61 |
|
eldif |
⊢ ( 𝑚 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ( 𝑚 ∈ 𝐵 ∧ ¬ 𝑚 ∈ 𝐴 ) ) |
62 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = 1 ) |
63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∀ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = 1 ) |
64 |
23
|
nfeq1 |
⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐶 = 1 |
65 |
25
|
eqeq1d |
⊢ ( 𝑘 = 𝑚 → ( 𝐶 = 1 ↔ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 = 1 ) ) |
66 |
64 65
|
rspc |
⊢ ( 𝑚 ∈ ( 𝐵 ∖ 𝐴 ) → ( ∀ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = 1 → ⦋ 𝑚 / 𝑘 ⦌ 𝐶 = 1 ) ) |
67 |
63 66
|
mpan9 |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( 𝐵 ∖ 𝐴 ) ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐶 = 1 ) |
68 |
61 67
|
sylan2br |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑚 ∈ 𝐵 ∧ ¬ 𝑚 ∈ 𝐴 ) ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐶 = 1 ) |
69 |
60 68
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑚 ∈ 𝐵 ∧ ¬ 𝑚 ∈ 𝐴 ) ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
70 |
69
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → ( ¬ 𝑚 ∈ 𝐴 → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) ) |
71 |
57 70
|
pm2.61d |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
72 |
12
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
73 |
71 72
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
74 |
48
|
ssneld |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( ¬ 𝑚 ∈ 𝐵 → ¬ 𝑚 ∈ 𝐴 ) ) |
75 |
74
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ ¬ 𝑚 ∈ 𝐵 ) → ¬ 𝑚 ∈ 𝐴 ) |
76 |
75 58
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ ¬ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = 1 ) |
77 |
30
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ ¬ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) = 1 ) |
78 |
76 77
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ ¬ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
79 |
73 78
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
80 |
79
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
81 |
44 80
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) ) |
82 |
2
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ) |
83 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ) |
84 |
83
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ∈ ℂ ) |
85 |
6 7 8 10 81 84
|
zprod |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ( ⇝ ‘ seq 𝑀 ( · , ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ) ) |
86 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
87 |
43
|
ancoms |
⊢ ( ( if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ∈ ℂ ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
88 |
34 87
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
89 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → 𝑚 ∈ 𝐵 ) |
90 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) |
91 |
90
|
fvmpts |
⊢ ( ( 𝑚 ∈ 𝐵 ∧ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ∈ ℂ ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
92 |
89 50 91
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
93 |
92
|
ifeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
94 |
93
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
95 |
|
iffalse |
⊢ ( ¬ 𝑚 ∈ 𝐵 → if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = 1 ) |
96 |
95 30
|
eqtr4d |
⊢ ( ¬ 𝑚 ∈ 𝐵 → if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
97 |
96
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ¬ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
98 |
94 97
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
99 |
88 98
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) ) |
100 |
21
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ℂ ) |
101 |
100
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ℂ ) |
102 |
101
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ∈ ℂ ) |
103 |
6 7 8 86 99 102
|
zprod |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = ( ⇝ ‘ seq 𝑀 ( · , ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ) ) |
104 |
85 103
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ∏ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ) |
105 |
|
prodfc |
⊢ ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ∏ 𝑘 ∈ 𝐴 𝐶 |
106 |
|
prodfc |
⊢ ∏ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = ∏ 𝑘 ∈ 𝐵 𝐶 |
107 |
104 105 106
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) |
108 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐴 ⊆ 𝐵 ) |
109 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
110 |
|
uzf |
⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ |
111 |
110
|
fdmi |
⊢ dom ℤ≥ = ℤ |
112 |
111
|
eleq2i |
⊢ ( 𝑀 ∈ dom ℤ≥ ↔ 𝑀 ∈ ℤ ) |
113 |
|
ndmfv |
⊢ ( ¬ 𝑀 ∈ dom ℤ≥ → ( ℤ≥ ‘ 𝑀 ) = ∅ ) |
114 |
112 113
|
sylnbir |
⊢ ( ¬ 𝑀 ∈ ℤ → ( ℤ≥ ‘ 𝑀 ) = ∅ ) |
115 |
114
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → ( ℤ≥ ‘ 𝑀 ) = ∅ ) |
116 |
109 115
|
sseqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐵 ⊆ ∅ ) |
117 |
108 116
|
sstrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐴 ⊆ ∅ ) |
118 |
|
ss0 |
⊢ ( 𝐴 ⊆ ∅ → 𝐴 = ∅ ) |
119 |
117 118
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐴 = ∅ ) |
120 |
|
ss0 |
⊢ ( 𝐵 ⊆ ∅ → 𝐵 = ∅ ) |
121 |
116 120
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐵 = ∅ ) |
122 |
119 121
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐴 = 𝐵 ) |
123 |
122
|
prodeq1d |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) |
124 |
107 123
|
pm2.61dan |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) |