| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prodss.1 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐵 ) | 
						
							| 2 |  | prodss.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐶  ∈  ℂ ) | 
						
							| 3 |  | prodss.3 | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  if ( 𝑘  ∈  𝐵 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 ) ) | 
						
							| 4 |  | prodss.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐵  ∖  𝐴 ) )  →  𝐶  =  1 ) | 
						
							| 5 |  | prodss.5 | ⊢ ( 𝜑  →  𝐵  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 6 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑀 )  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  𝑀  ∈  ℤ ) | 
						
							| 8 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  if ( 𝑘  ∈  𝐵 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 ) ) | 
						
							| 9 | 1 5 | sstrd | ⊢ ( 𝜑  →  𝐴  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  𝐴  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 12 |  | iftrue | ⊢ ( 𝑚  ∈  𝐵  →  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 )  =  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝐵 )  →  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 )  =  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ) | 
						
							| 14 | 2 | ex | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  →  𝐶  ∈  ℂ ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  →  ( 𝑘  ∈  𝐴  →  𝐶  ∈  ℂ ) ) | 
						
							| 16 |  | eldif | ⊢ ( 𝑘  ∈  ( 𝐵  ∖  𝐴 )  ↔  ( 𝑘  ∈  𝐵  ∧  ¬  𝑘  ∈  𝐴 ) ) | 
						
							| 17 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 18 | 4 17 | eqeltrdi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐵  ∖  𝐴 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 19 | 16 18 | sylan2br | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝐵  ∧  ¬  𝑘  ∈  𝐴 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 20 | 19 | expr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  →  ( ¬  𝑘  ∈  𝐴  →  𝐶  ∈  ℂ ) ) | 
						
							| 21 | 15 20 | pm2.61d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  →  𝐶  ∈  ℂ ) | 
						
							| 22 | 21 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐵 𝐶  ∈  ℂ ) | 
						
							| 23 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑚  /  𝑘 ⦌ 𝐶 | 
						
							| 24 | 23 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑚  /  𝑘 ⦌ 𝐶  ∈  ℂ | 
						
							| 25 |  | csbeq1a | ⊢ ( 𝑘  =  𝑚  →  𝐶  =  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ) | 
						
							| 26 | 25 | eleq1d | ⊢ ( 𝑘  =  𝑚  →  ( 𝐶  ∈  ℂ  ↔  ⦋ 𝑚  /  𝑘 ⦌ 𝐶  ∈  ℂ ) ) | 
						
							| 27 | 24 26 | rspc | ⊢ ( 𝑚  ∈  𝐵  →  ( ∀ 𝑘  ∈  𝐵 𝐶  ∈  ℂ  →  ⦋ 𝑚  /  𝑘 ⦌ 𝐶  ∈  ℂ ) ) | 
						
							| 28 | 22 27 | mpan9 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝐵 )  →  ⦋ 𝑚  /  𝑘 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 29 | 13 28 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝐵 )  →  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 )  ∈  ℂ ) | 
						
							| 30 |  | iffalse | ⊢ ( ¬  𝑚  ∈  𝐵  →  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 )  =  1 ) | 
						
							| 31 | 30 17 | eqeltrdi | ⊢ ( ¬  𝑚  ∈  𝐵  →  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 )  ∈  ℂ ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝑚  ∈  𝐵 )  →  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 )  ∈  ℂ ) | 
						
							| 33 | 29 32 | pm2.61dan | ⊢ ( 𝜑  →  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 )  ∈  ℂ ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 )  ∈  ℂ ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 )  ∈  ℂ ) | 
						
							| 36 |  | nfcv | ⊢ Ⅎ 𝑘 𝑚 | 
						
							| 37 |  | nfv | ⊢ Ⅎ 𝑘 𝑚  ∈  𝐵 | 
						
							| 38 |  | nfcv | ⊢ Ⅎ 𝑘 1 | 
						
							| 39 | 37 23 38 | nfif | ⊢ Ⅎ 𝑘 if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 ) | 
						
							| 40 |  | eleq1w | ⊢ ( 𝑘  =  𝑚  →  ( 𝑘  ∈  𝐵  ↔  𝑚  ∈  𝐵 ) ) | 
						
							| 41 | 40 25 | ifbieq1d | ⊢ ( 𝑘  =  𝑚  →  if ( 𝑘  ∈  𝐵 ,  𝐶 ,  1 )  =  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 ) ) | 
						
							| 42 |  | eqid | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  if ( 𝑘  ∈  𝐵 ,  𝐶 ,  1 ) )  =  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  if ( 𝑘  ∈  𝐵 ,  𝐶 ,  1 ) ) | 
						
							| 43 | 36 39 41 42 | fvmptf | ⊢ ( ( 𝑚  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 )  ∈  ℂ )  →  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  if ( 𝑘  ∈  𝐵 ,  𝐶 ,  1 ) ) ‘ 𝑚 )  =  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 ) ) | 
						
							| 44 | 11 35 43 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  if ( 𝑘  ∈  𝐵 ,  𝐶 ,  1 ) ) ‘ 𝑚 )  =  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 ) ) | 
						
							| 45 |  | iftrue | ⊢ ( 𝑚  ∈  𝐴  →  if ( 𝑚  ∈  𝐴 ,  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 ) ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  𝐴 )  →  if ( 𝑚  ∈  𝐴 ,  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 ) ) | 
						
							| 47 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  𝐴 )  →  𝑚  ∈  𝐴 ) | 
						
							| 48 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  𝐴  ⊆  𝐵 ) | 
						
							| 49 | 48 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  𝐴 )  →  𝑚  ∈  𝐵 ) | 
						
							| 50 | 28 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  𝐵 )  →  ⦋ 𝑚  /  𝑘 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 51 | 49 50 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  𝐴 )  →  ⦋ 𝑚  /  𝑘 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 52 |  | eqid | ⊢ ( 𝑘  ∈  𝐴  ↦  𝐶 )  =  ( 𝑘  ∈  𝐴  ↦  𝐶 ) | 
						
							| 53 | 52 | fvmpts | ⊢ ( ( 𝑚  ∈  𝐴  ∧  ⦋ 𝑚  /  𝑘 ⦌ 𝐶  ∈  ℂ )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 )  =  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ) | 
						
							| 54 | 47 51 53 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  𝐴 )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 )  =  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ) | 
						
							| 55 | 46 54 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  𝐴 )  →  if ( 𝑚  ∈  𝐴 ,  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ) | 
						
							| 56 | 55 | ex | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ( 𝑚  ∈  𝐴  →  if ( 𝑚  ∈  𝐴 ,  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  𝐵 )  →  ( 𝑚  ∈  𝐴  →  if ( 𝑚  ∈  𝐴 ,  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ) ) | 
						
							| 58 |  | iffalse | ⊢ ( ¬  𝑚  ∈  𝐴  →  if ( 𝑚  ∈  𝐴 ,  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  1 ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( 𝑚  ∈  𝐵  ∧  ¬  𝑚  ∈  𝐴 )  →  if ( 𝑚  ∈  𝐴 ,  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  1 ) | 
						
							| 60 | 59 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  ( 𝑚  ∈  𝐵  ∧  ¬  𝑚  ∈  𝐴 ) )  →  if ( 𝑚  ∈  𝐴 ,  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  1 ) | 
						
							| 61 |  | eldif | ⊢ ( 𝑚  ∈  ( 𝐵  ∖  𝐴 )  ↔  ( 𝑚  ∈  𝐵  ∧  ¬  𝑚  ∈  𝐴 ) ) | 
						
							| 62 | 4 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 𝐵  ∖  𝐴 ) 𝐶  =  1 ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ∀ 𝑘  ∈  ( 𝐵  ∖  𝐴 ) 𝐶  =  1 ) | 
						
							| 64 | 23 | nfeq1 | ⊢ Ⅎ 𝑘 ⦋ 𝑚  /  𝑘 ⦌ 𝐶  =  1 | 
						
							| 65 | 25 | eqeq1d | ⊢ ( 𝑘  =  𝑚  →  ( 𝐶  =  1  ↔  ⦋ 𝑚  /  𝑘 ⦌ 𝐶  =  1 ) ) | 
						
							| 66 | 64 65 | rspc | ⊢ ( 𝑚  ∈  ( 𝐵  ∖  𝐴 )  →  ( ∀ 𝑘  ∈  ( 𝐵  ∖  𝐴 ) 𝐶  =  1  →  ⦋ 𝑚  /  𝑘 ⦌ 𝐶  =  1 ) ) | 
						
							| 67 | 63 66 | mpan9 | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  ( 𝐵  ∖  𝐴 ) )  →  ⦋ 𝑚  /  𝑘 ⦌ 𝐶  =  1 ) | 
						
							| 68 | 61 67 | sylan2br | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  ( 𝑚  ∈  𝐵  ∧  ¬  𝑚  ∈  𝐴 ) )  →  ⦋ 𝑚  /  𝑘 ⦌ 𝐶  =  1 ) | 
						
							| 69 | 60 68 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  ( 𝑚  ∈  𝐵  ∧  ¬  𝑚  ∈  𝐴 ) )  →  if ( 𝑚  ∈  𝐴 ,  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ) | 
						
							| 70 | 69 | expr | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  𝐵 )  →  ( ¬  𝑚  ∈  𝐴  →  if ( 𝑚  ∈  𝐴 ,  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ) ) | 
						
							| 71 | 57 70 | pm2.61d | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  𝐵 )  →  if ( 𝑚  ∈  𝐴 ,  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ) | 
						
							| 72 | 12 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  𝐵 )  →  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 )  =  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ) | 
						
							| 73 | 71 72 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  𝐵 )  →  if ( 𝑚  ∈  𝐴 ,  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 ) ) | 
						
							| 74 | 48 | ssneld | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ( ¬  𝑚  ∈  𝐵  →  ¬  𝑚  ∈  𝐴 ) ) | 
						
							| 75 | 74 | imp | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  ¬  𝑚  ∈  𝐵 )  →  ¬  𝑚  ∈  𝐴 ) | 
						
							| 76 | 75 58 | syl | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  ¬  𝑚  ∈  𝐵 )  →  if ( 𝑚  ∈  𝐴 ,  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  1 ) | 
						
							| 77 | 30 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  ¬  𝑚  ∈  𝐵 )  →  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 )  =  1 ) | 
						
							| 78 | 76 77 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  ¬  𝑚  ∈  𝐵 )  →  if ( 𝑚  ∈  𝐴 ,  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 ) ) | 
						
							| 79 | 73 78 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  if ( 𝑚  ∈  𝐴 ,  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 ) ) | 
						
							| 80 | 79 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  if ( 𝑚  ∈  𝐴 ,  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 ) ) | 
						
							| 81 | 44 80 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  if ( 𝑘  ∈  𝐵 ,  𝐶 ,  1 ) ) ‘ 𝑚 )  =  if ( 𝑚  ∈  𝐴 ,  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 ) ,  1 ) ) | 
						
							| 82 | 2 | fmpttd | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  𝐶 ) : 𝐴 ⟶ ℂ ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ( 𝑘  ∈  𝐴  ↦  𝐶 ) : 𝐴 ⟶ ℂ ) | 
						
							| 84 | 83 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  𝐴 )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 85 | 6 7 8 10 81 84 | zprod | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ∏ 𝑚  ∈  𝐴 ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 )  =  (  ⇝  ‘ seq 𝑀 (  ·  ,  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  if ( 𝑘  ∈  𝐵 ,  𝐶 ,  1 ) ) ) ) ) | 
						
							| 86 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  𝐵  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 87 | 43 | ancoms | ⊢ ( ( if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 )  ∈  ℂ  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  if ( 𝑘  ∈  𝐵 ,  𝐶 ,  1 ) ) ‘ 𝑚 )  =  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 ) ) | 
						
							| 88 | 34 87 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  if ( 𝑘  ∈  𝐵 ,  𝐶 ,  1 ) ) ‘ 𝑚 )  =  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 ) ) | 
						
							| 89 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  𝐵 )  →  𝑚  ∈  𝐵 ) | 
						
							| 90 |  | eqid | ⊢ ( 𝑘  ∈  𝐵  ↦  𝐶 )  =  ( 𝑘  ∈  𝐵  ↦  𝐶 ) | 
						
							| 91 | 90 | fvmpts | ⊢ ( ( 𝑚  ∈  𝐵  ∧  ⦋ 𝑚  /  𝑘 ⦌ 𝐶  ∈  ℂ )  →  ( ( 𝑘  ∈  𝐵  ↦  𝐶 ) ‘ 𝑚 )  =  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ) | 
						
							| 92 | 89 50 91 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  𝐵 )  →  ( ( 𝑘  ∈  𝐵  ↦  𝐶 ) ‘ 𝑚 )  =  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ) | 
						
							| 93 | 92 | ifeq1d | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  𝐵 )  →  if ( 𝑚  ∈  𝐵 ,  ( ( 𝑘  ∈  𝐵  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 ) ) | 
						
							| 94 | 93 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑚  ∈  𝐵 )  →  if ( 𝑚  ∈  𝐵 ,  ( ( 𝑘  ∈  𝐵  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 ) ) | 
						
							| 95 |  | iffalse | ⊢ ( ¬  𝑚  ∈  𝐵  →  if ( 𝑚  ∈  𝐵 ,  ( ( 𝑘  ∈  𝐵  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  1 ) | 
						
							| 96 | 95 30 | eqtr4d | ⊢ ( ¬  𝑚  ∈  𝐵  →  if ( 𝑚  ∈  𝐵 ,  ( ( 𝑘  ∈  𝐵  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 ) ) | 
						
							| 97 | 96 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  ¬  𝑚  ∈  𝐵 )  →  if ( 𝑚  ∈  𝐵 ,  ( ( 𝑘  ∈  𝐵  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 ) ) | 
						
							| 98 | 94 97 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  if ( 𝑚  ∈  𝐵 ,  ( ( 𝑘  ∈  𝐵  ↦  𝐶 ) ‘ 𝑚 ) ,  1 )  =  if ( 𝑚  ∈  𝐵 ,  ⦋ 𝑚  /  𝑘 ⦌ 𝐶 ,  1 ) ) | 
						
							| 99 | 88 98 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  if ( 𝑘  ∈  𝐵 ,  𝐶 ,  1 ) ) ‘ 𝑚 )  =  if ( 𝑚  ∈  𝐵 ,  ( ( 𝑘  ∈  𝐵  ↦  𝐶 ) ‘ 𝑚 ) ,  1 ) ) | 
						
							| 100 | 21 | fmpttd | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐵  ↦  𝐶 ) : 𝐵 ⟶ ℂ ) | 
						
							| 101 | 100 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ( 𝑘  ∈  𝐵  ↦  𝐶 ) : 𝐵 ⟶ ℂ ) | 
						
							| 102 | 101 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ℤ )  ∧  𝑚  ∈  𝐵 )  →  ( ( 𝑘  ∈  𝐵  ↦  𝐶 ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 103 | 6 7 8 86 99 102 | zprod | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ∏ 𝑚  ∈  𝐵 ( ( 𝑘  ∈  𝐵  ↦  𝐶 ) ‘ 𝑚 )  =  (  ⇝  ‘ seq 𝑀 (  ·  ,  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  if ( 𝑘  ∈  𝐵 ,  𝐶 ,  1 ) ) ) ) ) | 
						
							| 104 | 85 103 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ∏ 𝑚  ∈  𝐴 ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 )  =  ∏ 𝑚  ∈  𝐵 ( ( 𝑘  ∈  𝐵  ↦  𝐶 ) ‘ 𝑚 ) ) | 
						
							| 105 |  | prodfc | ⊢ ∏ 𝑚  ∈  𝐴 ( ( 𝑘  ∈  𝐴  ↦  𝐶 ) ‘ 𝑚 )  =  ∏ 𝑘  ∈  𝐴 𝐶 | 
						
							| 106 |  | prodfc | ⊢ ∏ 𝑚  ∈  𝐵 ( ( 𝑘  ∈  𝐵  ↦  𝐶 ) ‘ 𝑚 )  =  ∏ 𝑘  ∈  𝐵 𝐶 | 
						
							| 107 | 104 105 106 | 3eqtr3g | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ∏ 𝑘  ∈  𝐴 𝐶  =  ∏ 𝑘  ∈  𝐵 𝐶 ) | 
						
							| 108 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑀  ∈  ℤ )  →  𝐴  ⊆  𝐵 ) | 
						
							| 109 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑀  ∈  ℤ )  →  𝐵  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 110 |  | uzf | ⊢ ℤ≥ : ℤ ⟶ 𝒫  ℤ | 
						
							| 111 | 110 | fdmi | ⊢ dom  ℤ≥  =  ℤ | 
						
							| 112 | 111 | eleq2i | ⊢ ( 𝑀  ∈  dom  ℤ≥  ↔  𝑀  ∈  ℤ ) | 
						
							| 113 |  | ndmfv | ⊢ ( ¬  𝑀  ∈  dom  ℤ≥  →  ( ℤ≥ ‘ 𝑀 )  =  ∅ ) | 
						
							| 114 | 112 113 | sylnbir | ⊢ ( ¬  𝑀  ∈  ℤ  →  ( ℤ≥ ‘ 𝑀 )  =  ∅ ) | 
						
							| 115 | 114 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝑀  ∈  ℤ )  →  ( ℤ≥ ‘ 𝑀 )  =  ∅ ) | 
						
							| 116 | 109 115 | sseqtrd | ⊢ ( ( 𝜑  ∧  ¬  𝑀  ∈  ℤ )  →  𝐵  ⊆  ∅ ) | 
						
							| 117 | 108 116 | sstrd | ⊢ ( ( 𝜑  ∧  ¬  𝑀  ∈  ℤ )  →  𝐴  ⊆  ∅ ) | 
						
							| 118 |  | ss0 | ⊢ ( 𝐴  ⊆  ∅  →  𝐴  =  ∅ ) | 
						
							| 119 | 117 118 | syl | ⊢ ( ( 𝜑  ∧  ¬  𝑀  ∈  ℤ )  →  𝐴  =  ∅ ) | 
						
							| 120 |  | ss0 | ⊢ ( 𝐵  ⊆  ∅  →  𝐵  =  ∅ ) | 
						
							| 121 | 116 120 | syl | ⊢ ( ( 𝜑  ∧  ¬  𝑀  ∈  ℤ )  →  𝐵  =  ∅ ) | 
						
							| 122 | 119 121 | eqtr4d | ⊢ ( ( 𝜑  ∧  ¬  𝑀  ∈  ℤ )  →  𝐴  =  𝐵 ) | 
						
							| 123 | 122 | prodeq1d | ⊢ ( ( 𝜑  ∧  ¬  𝑀  ∈  ℤ )  →  ∏ 𝑘  ∈  𝐴 𝐶  =  ∏ 𝑘  ∈  𝐵 𝐶 ) | 
						
							| 124 | 107 123 | pm2.61dan | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 𝐶  =  ∏ 𝑘  ∈  𝐵 𝐶 ) |